Skip to main content Accessibility help
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.352 Render date: 2022-08-10T02:29:13.468Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade

Published online by Cambridge University Press:  20 January 2017

Glen M. MacDonald*
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1524, USA
Katrina A. Moser
Department of Geography, University of Western Ontario, London, ON, Canada N6A 5B8
Amy M. Bloom
Department of Geography-Geology, Illinois State University, Normal, IL 61790-4400, USA
David F. Porinchu
Department of Geography, The Ohio State University, Columbus, OH 43210, USA
Aaron P. Potito
Department of Geography, National University of Ireland, Galway, Republic of Ireland
Brent B. Wolfe
Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
Thomas W.D. Edwards
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Amanda Petel
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA
Antony R. Orme
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA
Amalie Jo Orme
Department of Geography, CSU Northridge, Northridge, CA 91330-8249, USA
*Corresponding author. Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA. E-mail (G.M. MacDonald).


Sediment records from two lakes in the east-central Sierra Nevada, California, provide evidence of cooling and hydrological shifts during the Younger Dryas stade (YD; ~ 12,900–11,500 cal yr BP). A chironomid transfer function suggests that lake-water temperatures were depressed by 2°C to 4°C relative to maximum temperatures during the preceding Bølling–Allerød interstade (BA; ~ 14,500–12,900 cal yr BP). Diatom and stable isotope records suggest dry conditions during the latter part of the BA interstade and development of relatively moist conditions during the initiation of the YD stade, with a reversion to drier conditions later in the YD. These paleohydrological inferences correlate with similar timed changes detected in the adjacent Great Basin. Vegetation response during the YD stade includes the development of more open and xeric vegetation toward the end of the YD. The new records support linkages between the North Atlantic, the North Pacific, and widespread YD cooling in western North America, but they also suggest complex hydrological influences. Shifting hydrological conditions and relatively muted vegetation changes may explain the previous lack of evidence for the YD stade in the Sierra Nevada and the discordance in some paleohydrological and glacial records of the YD stade from the western United States.

Original Articles
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adam, D.P., (1985). Quaternary pollen records from California.. Bryant, V.M., Holloway, R.G. Pollen records of Late Quaternary North American sediments American Association of Stratigraphic Palynologists Foundation, Dallas., pp. 125140.Google Scholar
Adams, K.D., (2007). Late Holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA.. Geological Society of America Bulletin 119, 126139.CrossRefGoogle Scholar
Alley, R.B., (2000). The Younger Dryas cold interval as viewed from central Greenland.. Quaternary Science Reviews 19, 213226.CrossRefGoogle Scholar
Anderson, R.S., (1990). Holocene forest development and paleoclimates within the central Sierra Nevada: California.. Journal of Ecology 78, 470489.CrossRefGoogle Scholar
Bacon, S.N., Burke, R.M., Pezzopane, S.K., Jayko, A.S., (2006). Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA.. Quaternary Science Reviews 25, 2641282.CrossRefGoogle Scholar
Bailey, R.A., (1989). Geologic map of Long Valley caldera, Mono-Inyo Craters volcanic chain, and vicinity, Mono County, California.. U.S. Geological Survey Miscellaneous Investigations Map I-1933.Google Scholar
Barron, J.A., Heusser, L., Herbert, T., Lyle, M., (2003). High-resolution climatic evolution of coastal northern California during the past 16,000 years.. Paleoceanography 18, 10.1029/2002PA000768.CrossRefGoogle Scholar
Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L., Juggins, S., (2001). Diatoms.. Birks, H.J.B., Last, W.M., Smol, J.P. Tracking environmental change using lake sediments Volume 3: terrestrial, algal, and silicious indicators Kluwer Academic Publishers, Dordrecht., pp. 155202.Google Scholar
Benson, L.V., Burdett, J.W., Lund, S.P., Kashgarian, M., Mensing, S., (1997). Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination.. Nature 388, 263265.CrossRefGoogle Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., Lindström, S., (2002). Holocene multidecadal and multicentennial droughts affecting northern California and Nevada.. Quaternary Science Reviews 21, 659682.CrossRefGoogle Scholar
Birks, H.J.B., (1998). Numerical tools in palaeolimnology — progess, potentialities and problems.. Journal of Paleolimnology 20, 307332.CrossRefGoogle Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.L., Wohlfarth, B., Hammer, C., Spurk, M., (1996). Synchronized terrestrial atmospheric deglacial records around the North Atlantic.. Science 274, 11551160.CrossRefGoogle ScholarPubMed
Bloom, A.M., Moser, K.A., Porinchu, D.F., MacDonald, G.M., (2003). Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA.. Journal of Paleolimnology 29, 235255.CrossRefGoogle Scholar
Bradshaw, E.G., Jones, V.J., Birks, H.J.B., Birks, H.H., (2000). Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway.. Journal of Paleolimnology 23, 2134.CrossRefGoogle Scholar
Briggs, R.W., Wesnousky, S.G., Adams, K.D., (2005). Late Pleistocene and late Holocene lake highstands in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA.. Quaternary Research 64, 257263.CrossRefGoogle Scholar
Broecker, W.S., (1997). Thermohaline circulation, the Achilles' Heel of our climate system: will man-made CO2 upset the current balance?.. Science 278, 15821588.CrossRefGoogle Scholar
Broecker, W.S., (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?.. Science 300, 15191522.CrossRefGoogle ScholarPubMed
Burbank, D.W., (1991). Late Quaternary snowline reconstructions for the southern and central Sierra Nevada, California: reassessment of the “Recess Peak”.. Glaciation. Quaternary Research 36, 294306.CrossRefGoogle Scholar
Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J., Meissner, K.J., (2007). Geochemical proxies of North American freshwater routing during the Younger Dryas.. PNAS 104, 65566561.CrossRefGoogle ScholarPubMed
Clark, D.H., Gillespie, A.R., (1997). Timing and significance of late-glacial and Holocene cirque glaciation in the Sierra Nevada, California.. Quaternary International 38/39, 2138.CrossRefGoogle Scholar
Cole, K.L., Arundel, S.T., (2005). Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona.. Geology 33, 713716.CrossRefGoogle Scholar
Davis, O.K., (1999). Pollen analysis of a Holocene — late-Glacial sediment core from Mono Lake, Mono County, California.. Quaternary Research 52, 243249.CrossRefGoogle Scholar
Dodge, F.C.W., (1971). Al2SiO5 in rocks of the Sierra Nevada and Inyo Mountain, California.. The American Mineralogist 56, 14431451.Google Scholar
Faegri, K., Iversen, J., Faegri, K., Kaland, P.E., Krzywinski, K., (1989). Textbook of pollen Analysis.. Fourth Edition John Wiley & Sons, New York. 328 pp.Google Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S., (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and Younger Dryas cooling.. PNAS 104, 1601616021.CrossRefGoogle ScholarPubMed
Gillespie, A.R., Zehfuss, P.H., (2004). Glaciations of the Sierra Nevada, California, USA.. Ehlers, J., Gibbar, P.L. Quaternary glaciations — extent and chronology, part II Elsevier B.V., Amsterdam., pp. 5167.CrossRefGoogle Scholar
Grigg, L.D., Whitlock, C., (1998). Late-glacial vegetation and climate change in western Oregon.. Quaternary Research 49, 287298.CrossRefGoogle Scholar
Grimm, E., (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares.. Computers & Geoscience 13, 1315.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results.. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hendy, I.L., Kennett, J.P., Roark, E.B., Ingram, B.L., (2002). Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10 ka.. Quaternary Science Reviews 21, 11671184.CrossRefGoogle Scholar
Hildreth, W., (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems.. Journal of Volcanology and Geothermal Research 136, 169198.CrossRefGoogle Scholar
Hill, D.P., Bailey, R.A., Ryall, A.S., (1985). Active tectonic and magmatic processes beneath Long Valley caldera, eastern California: a summary.. Journal of Geophysical Research 90, 11,11111,120.CrossRefGoogle Scholar
Huber, N.K., Rinehart, C.D., (1965). Geologic Map, Devils Postpile Quadrangle, California. U.S. Geological Survey Map GQ-437..Google Scholar
Huckleberry, G., Beck, C., Jones, G., Holmes, A., Cannon, M., Livingston, S., Broughton, J.M., (2001). Terminal Pleistocene/Early Holocene environmental change at the Sunshine Locality, north-central Nevada, U.S.A.. Quaternary Research 55, 303312.CrossRefGoogle Scholar
James, L.A., Harbor, J., Fabel, D., Dahms, D., Elmore, D., (2002). Late Pleistocene glaciations in the northwestern Sierra Nevada, California.. Quaternary Research 57, 409419.CrossRefGoogle Scholar
Juggins, S., (2003). C2 version 1.3. Software for ecological and palaeoecological analysis and visualization.. University of Newcastle, Newcastle upon Tyne, .Google Scholar
Juggins, S., ter Braak, C.J.F., (1993). CALIBRATE version 0.3: a program for species environment calibration by (weighted averaging) partial least squares regression.. Environmental Change Research Center, University College, London.Google Scholar
Kapp, R.O., Davis, O.K., King, J.E., (2000). How to identify pollen and spores, second edition.. Illustrated by R. C. Hall. American Association of Stratigraphic Palynologists Foundation, Dallas. 279 pp.Google Scholar
Koehler, P.A., Anderson, R.S., (1994). The paleoecology and stratigraphy of Nichols Meadow, Sierra National Forest, California, USA.. Palaeogeography, Palaeoclimatology, Palaeoecology 112, 117.CrossRefGoogle Scholar
Licciardi, J.M., (2001). Chronology of latest Pleistocene lake-level fluctuations in the pluvial Lake Chewaucan basin, Oregon, USA.. Journal of Quaternary Science 16, 545553.CrossRefGoogle Scholar
Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., Pankaj, S., (2004). Variable responses of western U.S. glaciers during the last deglaciation.. Geology 32, 8184.CrossRefGoogle Scholar
Liu, T., Broecker, W.S., Bell, J.W., Mandeville, C.W., (2000). Terminal Pleistocene wet event recorded in rock varnish from Las Vegas Valley, southern Nevada.. Palaeogeography. Palaeoclimatology. Palaeoecology 161, 423433.CrossRefGoogle Scholar
Lowell, T.V., Fisher, T.G., Comer, G.C., Hajdas, I., Waterson, N., Glover, K., Loope, H.M., Schaefer, J.M., Rinterknecht, V., Broecker, W., Denton, G., Teller, J.T., (2005). Testing the Lake Agassiz meltwater trigger for the Younger Dryas.. EOS 86, 365373.CrossRefGoogle Scholar
MacDonald, G.M., Beukens, R.P., Kieser, W.E., (1991). Radiocarbon dating of limnic sediments: a comparative analysis and discussion.. Ecology 72, 11501155.CrossRefGoogle Scholar
MacDonald, G.M., Kremenetski, K.V., Hidalgo, H., (2007). Southern California and the perfect drought: simultaneous prolonged drought in southern California and the Sacramento and Colorado River systems.. Quaternary International 10.1016/j.quaint.2007.06.027.Google Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., Brown-Leger, S., (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.. Nature 428, 834837.CrossRefGoogle ScholarPubMed
Melack, J.M., Stoddard, J.L., Ochs, C.A., (1985). Major ion chemistry and sensitivity to acid precipitation of Sierra Nevada lakes.. Water Resources Research 21, 2732.CrossRefGoogle Scholar
Mensing, S.A., (2001). Late-glacial and early Holocene vegetation and climate change near Owens Lake, eastern California.. Quaternary Research 55, 5765.CrossRefGoogle Scholar
Metz, J.M., Mahood, G.A., (1991). Development of the Long Valley magma chamber recorded in precaldera rhyolite lavas of Glass Mountain, California.. Contributions to Mineralogy and Petrology 106, 379397.CrossRefGoogle Scholar
Mikolajewicz, U., Crowley, T.J., Schiller, A., Voss, R., (1997). Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas.. Nature 387, 384387.CrossRefGoogle Scholar
Orme, A.J., Orme, A.R., (1993). Late Pleistocene oscillations of Lake Owens, eastern California.. Geological Society of America Abstracts with Programs 25, 129130.Google Scholar
Orme, A.R., Orme, A.J., (2008). Late Pleistocene shorelines of Owens Lake, California, and their hydroclimatic and tectonic implications.. Geological Society of America Special Paper 439, 207225.Google Scholar
Oviatt, C.G., Miller, D.M., McGeehin, J.P., Zachary, C., Mahan, S., (2005). The Younger Dryas phase of Great Salt Lake, Utah, USA.. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 263284.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Minnich, R.A., Perez, A.E., (2003). Extreme southwestern margin of late Quaternary glaciation in North America: timing and controls.. Geology 31, 729732.CrossRefGoogle Scholar
Phillips, F.M., Campbell, A.R., Smith, G.I., Bischoff, J.L., (1994). Interstadial climatic cycles: a link between western North America and Greenland?.. Geology 22, 11151118.2.3.CO;2>CrossRefGoogle Scholar
Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., Sharma, P., (1996). Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes.. Science 274, 749751.CrossRefGoogle Scholar
Porinchu, D.F., MacDonald, G.M., Bloom, A.M., Moser, K.A., (2002). The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions.. Journal of Paleolimnology, 28, 355375.CrossRefGoogle Scholar
Porinchu, D.F., MacDonald, G.M., Bloom, A.M., Moser, K.A., (2003). Late Pleistocene and early Holocene climate and limnological changes in the Sierra Nevada, California, USA inferred from midges (Insecta: Diptera: Chironomidae).. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 403422.CrossRefGoogle Scholar
Potito, A.P., Porinchu, D.F., MacDonald, G.M., Moser, K.A., (2007). A late Quaternary chironomid inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures.. Quaternary Research 66, 356363.CrossRefGoogle Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., (1998). Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin.. Quaternary Research 49, 129148.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Herring, C., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP.. Radiocarbon 46, 10291058.CrossRefGoogle Scholar
Rutter, N.W., Weaver, A.J., Rokosh, D., Fanning, A.F., Wright, D.G., (2000). Data–model comparison of the Younger Dryas event.. Canadian Journal of Earth Sciences 37, 811830.CrossRefGoogle Scholar
Smith, S.J., Anderson, R.S., (1992). Late Wisconsin paleoecologic record from Swamp Lake, Yosemite National Park, California.. Quaternary Research 38, 91102.CrossRefGoogle Scholar
Space, M.L., Ingraham, N.L., Hess, J.W., (1991). The use of stable isotopes in quantifying groundwater discharge to a partially diverted creek.. Journal of Hydrology 129, 175193.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon and calibration program.. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d., , Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon age calibration 24,000–0 cal BP.. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Stuvier, M., Reimer, P.J., Reimer, R., (2005). CALIB Radiocarbon Calibration 5.0.2.. Scholar
Thompson, R.S., (1992). Late Quaternary environments in Ruby Valley, Nevada.. Quaternary Research 27, 115.CrossRefGoogle Scholar
Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., (2005). A speleothem record of Younger Dryas cooling from the Klamath Mountains, Oregon.. Quaternary Research 64, 249256.CrossRefGoogle Scholar
Walker, I.R., (2001). Midges: Chironomidae and related Diptera.. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking environmental change in lake sediments. Volume 4. zoological indicators Kluwer Academic Publishers, Dordrecht., pp. 4366.CrossRefGoogle Scholar
Wolfe, B.B., Edwards, T.W.D., Elgood, R.J., Beuning, K.R.M., (2001). Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications.. Last, W.M., Smol, J.P. Tracking environmental change using lake sediments. Volume 2. physical and chemical techniques Kluwer Academic Publishers, Dordrecht., pp. 373400.Google Scholar
Wolfe, B.B., Falcone, M.D., Clogg-Wright, K.P., Mongeon, C.L., Yi, Y., Brock, B.E., St. Amour, N.A., Mark, W.A., Edwards, T.W.D., (2007). Progress in isotope paleohydrology using lake sediment cellulose.. Journal of Paleolimnology 37, 221231.CrossRefGoogle Scholar
Wright, H.E., (1991). Coring tips.. Journal of Paleolimnology 6, 3750.CrossRefGoogle Scholar
Zhou, W., Head, M.J., An, Z., De Deckker, P., Liu, Z., Liu, X., Lu, X., Donahue, D., Jull, A.J.T., Beck, J.W., (2001). Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode.. Earth and Planetary Science Letters 191, 231239.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *