Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-xl4lj Total loading time: 0.5 Render date: 2021-06-14T13:47:42.044Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Evidence of late glacial paleoseismicity from submarine landslide deposits within Lac Dasserat, northwestern Quebec, Canada

Published online by Cambridge University Press:  20 January 2017

Gregory R. Brooks
Affiliation:
Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, ON, K1A0E8, Canada
Corresponding
E-mail address:

Abstract

An integrated seismo- and chronostratigraphic investigation at Lac Dasserat, northwestern Quebec, identified 74 separate failures within eight event horizons. Horizons E and B, and H and G have strong or moderately-strong multi-landslide signatures, respectively, composed of 11-23 failures, while horizons F, D, C, and A have minor landslide signatures consisting of a single or pair of deposit(s). Cores collected at six sites recovered glacial Lake Ojibway varve deposits that are interbedded with the event horizons. The correlation of the varves to the regional Timiskaming varve series allowed varve ages or ranges of varve ages to be determined for the event horizons. Horizons H, G, E, and B are interpreted to be evidence of paleoearthquakes with differing levels of interpretative confidence, based on the relative strength of the multi-landslide signatures, the correlation to other disturbed deposits of similar age in the region, and the lack or possibility of alternative aseismic mechanisms. The four interpreted paleoearthquakes occurred between 9770 ± 200 and 8470 ± 200 cal yr BP, when glacial Lake Ojibway was impounded behind the Laurentide Ice Sheet during deglaciation. They probably represent an elevated period of seismicity at deglaciation that was driven by crustal unloading.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016

Access options

Get access to the full version of this content by using one of the access options below.

References

Adams, J., 1982. Deformed lake sediments record prehistoric earthquakes during the deglaciation of the Canadian Shield (abstract). EOS, Transactions. American Geophysical Union 63, 436.Google Scholar
Adams, J., 1989. Postglacial faulting in eastern Canada: nature, origin and seismic hazard implications. Tectonophysics 163, 323331.CrossRefGoogle Scholar
Adams, J., 1996. Paleoseismology in Canada: a dozen years of progress. Journal of Geophysical Research 101, 61936207. http://dx.doi.org/10.1029/95JB01817.CrossRefGoogle Scholar
Adams, J., Basham, P., 1989. The seismicity and seismotectonics of Canada east of the Cordillera. Geoscience Canada 16, 316.Google Scholar
Adams, J., Basham, P., 1991. The seismicity and seismotectonics of eastern Canada. In: Slemmons, D.B., Engdahl, E.R., Zoback, M.D., Blackwell, D.D. (Eds.), Neotectonics of North America. Geological Society of America, Decade Map, 1, pp. 261276.Google Scholar
Alpay, S., 2016. Multidisciplinary environmental science investigations surrounding the former Aldermac Mine, Abitibi, Quebec: the Lac Dasserat Study Workshop Summarized. Open File 7993 Geological Survey of Canada, Ottawa. http://dx.doi.org/10.4095/297747.Google Scholar
Anselmetti, F.S., Ariztegui, D., De Batist, M., Catalina, G.A.C., Haberzettl, T., Niessen, F., Ohlendorf, C., Zolitschka, B., 2009. Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology 56, 873892. http://dx.doi.org/10.1111/j.1365-3091.2008.01002.x.CrossRefGoogle Scholar
Antevs, E., 1925. Retreat of the last ice-sheet in eastern Canada. Memoir 146 Geological Survey of Canada, Ottawa. p. 292.CrossRefGoogle Scholar
Antevs, E., 1928. The Last Glaciation with Reference to the Retreat in Northeastern North America. American Geographical Society Research Series No. 17, New York.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.M., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.CrossRefGoogle Scholar
Basham, P.W., Weichert, D.H., Anglin, F.M., Berry, M.J., 1982. New probabilistic strong ground motion maps for Canada: a compilation of earth source zones, methods and results. Open File 82-33. Earth Physics Branch, Ottawa.CrossRefGoogle Scholar
Beck, C., 2011. Lake sediments as late Quaternary paleoseismic archives: examples in the northwestern Alps and clues for earthquake-origin assessment of sedimentary disturbances. In: Audemard, M.F.A., Michetti, A.M., McCalpin, J.P. (Eds.), Geological Criteria for Evaluating Seismicity Revealed: Forty Years of Paleoseismic Investigations and the Natural Records of Past Earthquakes, Geological Society of America, Special Paper, 479, pp. 159179. http://dx.doi.org/10.1130/2011.2479(07).CrossRefGoogle Scholar
Becker, A., Ferry, M., Monecke, K., Schnellmann, M., Giardini, D., 2005. Multiarchive paleoseismic record of late Pleistocene and Holocene strong earthquakes in Switzerland. Tectonophysics 400, 153177. http://dx.doi.org/10.1016/j.tecto.2005.03.001.CrossRefGoogle Scholar
Bertrand, S., Charlet, F., Chapron, E., Fagel, N., De Batist, M., 2008. Reconstruction of the Holocene seismotectonic activity of the southern Andes from seismites recorded in Lago Icalma, Chile, 39eS. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 301322. http://dx.doi.org/10.1016/j.palaeo.2007.10.013.CrossRefGoogle Scholar
Breckenridge, A., Lowell, T.V., Stroup, J.S., Evans, G., 2012. A review and analysis of varve thickness records from glacial Lake Ojibway (Ontario and Quebec, Canada). Quaternary International 260, 4354.CrossRefGoogle Scholar
Brooks, G.R., 2015. An integrated stratigraphic approach to investigating evidence of paleoearthquakes in lake deposits of eastern Canada. Geoscience Canada 42, 247261.CrossRefGoogle Scholar
Brooks, G.R., 2016. Reconnaissance sub-bottom profiling survey at Lac Opastica, Quebec. Open File 7984. Geological Survey of Canada, Ottawa. http://dx.doi.org/10.4095/297464.Google Scholar
Brooks, G.R., Medioli, B.E., 2012. Sub-bottom profiling and coring of sub-basins along the lower French River, Ontario; insights into depositional environments within the North Bay outlet. Journal of Paleolimnology 47, 447467. http://dx.doi.org/10.1007/s10933-010-9414-8.CrossRefGoogle Scholar
Chapron, E., Beck, C., Pourchet, M., Deconinck, J.-F., 1999. 1822 Earthquake-triggered homogenite in Lake Le Bourget (NW Alps). Terra Nova, 11, pp. 8692.Google Scholar
Daubois, V., Roy, M., Veillette, J.J., Menard, M., 2015. The drainage of Lake Ojibway in glaciolacustrine sediments of northern Ontario and Quebec, Canada. Boreas, 44, pp. 305318.Google Scholar
Doig, R., 1990. 2300 yr history of seismicity from silting events in Lake Tadoussac, Charlevoix, Quebec. Geology 18, 820823.2.3.CO;2>CrossRefGoogle Scholar
Doig, R., 1998. 3000-year paleoseismological record from the region of the 1988 Saguenay, Quebec, earthquake. Bulletin of the Seismological Society of America 88, 11981203.Google Scholar
Doughty, M., Eyles, N., Daurio, L., 2010. Earthquake-triggered slumps (1935 Timiskaming M6.2) in Lake Kipawa, Western Quebec Seismic Zone, Canada. Sedimentary Geology 228, 113118. http://dx.doi.org/10.1016/j.sedgeo.2010.04.003.CrossRefGoogle Scholar
Doughty, M., Eyles, N., Eyles, C.H., 2013. High-resolution seismic reflection profiling of neotectonic faults in Lake Timiskaming, Timiskaming Graben, Ontario-Quebec, Canada. Sedimentology 60, 9831006.CrossRefGoogle Scholar
Doughty, M., Eyles, N., Eyles, C.H., Wallace, K., Boyce, J.I., 2014. Lake sediments as natural seismographs: earthquake-related deformations (seismites) in central Canadian lakes. Sedimentary Geology 313, 4567.CrossRefGoogle Scholar
Dyke, A.S., Moore, A., Roberston, L., 2003. Deglaciation of North America. Open File 1574. Geological Survey of Canada, Ottawa.Google Scholar
Eyles, N., Zajch, A., Doughty, M., 2015. High-resolution seismic sub-bottom reflection record of low hypsithermal lake levels in Ontario lakes. Journal of Great Lakes Research 41, 4152.CrossRefGoogle Scholar
Girard, I., Klassen, R.A., Laframboise, R.R., Lindsay, P.J., 2004. Sedimentology laboratory manual, Terrain Sciences Division. Open File 4823. Geological Survey of Canada, Ottawa.Google Scholar
Gouin, P., 2001. Tremblements de terre historiques au Québec: de 1534 à mars 1925, identifiés et interprétés à partir des textes originaux contemporains — Historical earthquakes felt in Quebec: from 1534 to March 1925, as revealed by the local contemporary literature. Guérin éditeur Itée, Montreal.Google Scholar
Hardy, L., 1982. Le Wisconsonien supérieur à l’est de la baie James (Québec). Naturaliste Canadien 109, 333351.Google Scholar
Hughes, O.L., 1959. Surfical Geology of Smooth Rock and Iroquois Falls Map Areas, Cochrane District. Department of Geology, University of Kansas, Ontario (unpublished Ph.D. thesis).Google Scholar
Hughes, O.L., 1965. Surficial geology of part of the Cochrane district, Ontario, Canada. In: Wright, H.E. Jr., Frey, D.G. (Eds.), International Studies on the Quaternary INQUA U.S.A. Geological Society of America, Special Paper 84, pp. 535565.Google Scholar
Jibson, R.W., 2009. Using landslides for paleoseismic analysis. In: McCalpin, J.P. (Ed.), Paleoseismology, second ed. International Geophysics 95, pp. 565601.CrossRefGoogle Scholar
Johnston, A.C., 1996. A wave in the earth. Science 274, 735.CrossRefGoogle Scholar
Karlin, R.E., Holmes, M., Abella, S.E.B., Sylwester, R., 2004. Holocene landslides and a 3500-year record of Pacific Northwest earthquakes from sediments in Lake Washington. Geological Society of America Bulletin 116, 94108. http://dx.doi.org/10.1130/B25158.1.CrossRefGoogle Scholar
Kaszycki, C.A., 1987. A model for glacial and proglacial sedimentation in the shield terrane of southern Ontario. Canadian Journal of Earth Sciences 24, 23732391.CrossRefGoogle Scholar
Klassen, R.A., Shilts, W.W., 1982. Subbottom profiling of lakes of the Canadian Shield. Current Research, Part A, Paper 82-1A, Geological Survey of Canada, Ottawa, pp. 375384.Google Scholar
Kremer, K., Hilbe, M., Simpson, G., Decrouy, L., Wildi, W., Girardclos, S., 2015. Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland). Sedimentology 62, 13051327.CrossRefGoogle Scholar
Lagerbäck, R., 1990. Late Quaternary faulting and paleoseismicity in northern Fennoscandia, with particular reference to the Lansjarv area, northern Sweden. Geologiska Foreningens/Stockholm Forhandlingar 112, 333354.CrossRefGoogle Scholar
Lajeunesse, P., Sinkunas, B., Morissette, A., Normandeau, A., Joyal, G., St-Onge, G., Locat, J., in press. Large-scale seismically-induced mass-movements in a former glacial lake basin: Lake Temiscouata, northeastern Appalachians (eastern Canada). Marine Geology (2016), http://dx.doi.org/10.1016/j.margeo.2016.04.007.Google Scholar
Lamontagne, M., Halchuk, S., Cassidy, J.F., Rogers, G.C., 2008. Significant Canadian earthquakes of the period 1600-2006. Seismological Research Letters 79, 211223.CrossRefGoogle Scholar
Lamoureux, S., 2001. Varve chronology techniques. In: Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments, Basin analysis, Coring, and Chronological Techniques, 1. Kluwer Academic Publishers, Dordrecht, pp. 247259.Google Scholar
Lazorek, M., Eyles, N., Eyles, C.H., Doughty, M., L’Heureux, E., Milkereit, B., 2006. Late Quaternary seismo-stratigraphy of Lake Wanapitei, Sudbury, Ontario, Canada: arguments for a possible meteorite impact origin. Sedimentary Geology 192, 231242.CrossRefGoogle Scholar
Livingstone, D.A., 1955. A lightweight piston sampler for lake deposits. Ecology 36, 137139.CrossRefGoogle Scholar
Lundqvist, J., Lagerback, R., 1976. The Parve fault; a late-glacial fault in the Precam-brian of Swedish Lapland. Geologiska Foreningens/Stockholm Forhandlingar 98, 4551.CrossRefGoogle Scholar
Michetti, A.M., et al., 2015. Environmental seismic intensity scale — ESI 2007. Memorie descrittive della carta geologica d’Italia 97, 1120 Google Scholar
Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E., Pino, M., Brümmer, R., Urrutia, R., 2007. Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sedimentary Geology 195, 239256. http://dx.doi.org/10.1016/j.sedgeo.2006.08.005.CrossRefGoogle Scholar
Moernaut, J., Daele, M.V., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., De Batist, M., 2014. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth 119, 16071633 Google Scholar
Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: a Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae 99, 343362. http://dx.doi.org/10.1007/s00015-006-1193-x.CrossRefGoogle Scholar
Morey, A.E., Goldfinger, C., Briles, C.E., Gavin, D.G., Colombaroli, D., Kusler, J.E., 2013. Are great Cascadia earthquakes recorded in the sedimentary records from small forearc lakes? Natural Hazards and Earth Systems Science 13, 24412463. http://dx.doi.org/10.5194/nhess-13-2441-2013.CrossRefGoogle Scholar
Mörner, N.-A., 2003. Paleoseismicity of Sweden: a Novel Paradigm: a Contribution to INQUA from its Sub-commission on Paleoseismicity. Stockholm University, Stockholm.Google Scholar
Mörner, N.-A., 2004. Active faults and paleoseismicity in Fennoscandia, especially Sweden: primary structures and secondary effects. Tectonophysics 380, 139157.CrossRefGoogle Scholar
Morner, N.-A., 2005. An interpretation and catalogue of paleoseismicity in Sweden. Tectonophysics 408, 265307.CrossRefGoogle Scholar
Nomade, J., Chapron, E., Desmet, M., Reyss, J.-L., Arnaud, F., Lignier, V., 2005. Reconstructing historical seismicity from lake sediments (Lake Laffrey, Western Alps, France). Terra Nova 17, 350357.CrossRefGoogle Scholar
Normandeau, A., Lajeunesse, P., Philibert, G., 2013. Late-Quaternary morphos-tratigraphy of Lake St-Joseph (southeastern Canadian Shield): Evolution from a semi-enclosed glacimarine basin to a postglacial lake. Sedimentary Geology 295, 3852.CrossRefGoogle Scholar
Ouellet, M., 1997. Lake sediments and Holocene seismic hazard assessment within the St. Lawrence Valley, Quebec. Geological Society of America Bulletin 109, 631642.2.3.CO;2>CrossRefGoogle Scholar
Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology 235, 133140.CrossRefGoogle Scholar
Praet, N., Moernaut, J., Van Daele, M., Boes, E., Haeussler, P.J., Strupler, M., Schmidt, S., Loso, M.G., De Batist, M., in press. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska). Marine Geology (2016), http://dx.doi.org/10.1016/j.margeo.2016.05.004.Google Scholar
Rayburn, J.A., Vollmer, F.W., 2013. ANTEVS: a quantitative varve sequence cross-correlation technique with examples from the northeastern United States. GFF: Journal of the Geological Society of Sweden 135, 282292.CrossRefGoogle Scholar
Roy, M., Dell’Oste, F., Veillette, J.J., De Vernal, A., Helie, J.F., Parent, M., 2011. Insights on the events surrounding the final drainage of Lake Ojibway based on James Bay stratigraphic sequences. Quaternary Science Reviews 30, 682692.CrossRefGoogle Scholar
Roy, M., Veillette, J.J., Daubois, V., Menard, M., 2015. Late-stage phases of glacial Lake Ojibway in the central Abitibi region, eastern Canada. Geomorphology 248, 1423.CrossRefGoogle Scholar
Schnellmann, M., Anselmetti, F.S., Giardini, D., McKenzie, J.A., Ward, S.N., 2002. Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30, 11311134. http://dx.doi.org/10.1130/0091-7613.2.0.CO;2>CrossRefGoogle Scholar
Schnellmann, M., Anselmetti, F.S., Giardini, D., McKenzie, J.A., 2006. 15,000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae 99, 409428. http://dx.doi.org/10.1007/s00015-006-1196-7.CrossRefGoogle Scholar
Shilts, W.W., 1984. Sonar evidence of postglacial tectonic instability of the Canadian Shield and Appalachians. In: Current Research, Part A, Paper 84-1A. Geological Survey of Canada, Ottawa, pp. 567579.Google Scholar
Shilts, W.W., Clague, J.J., 1992. Documentation of earthquake-induced disturbance of lake sediments using subbottom acoustic profiling. Canadian Journal of Earth Sciences 29, 10181042.CrossRefGoogle Scholar
Shilts, W.W., Rappol, M., Blais, A., 1992. Evidence of late and postglacial seismic activity in the Temiscouata -Madawaska Valley, Quebec-New Brunswick, Canada. Canadian Journal of Earth Sciences 29, 10431069 CrossRefGoogle Scholar
Siegenthaler, C., Finger, W., Kelts, K., Wang, S., 1987. Earthquake and seiche deposits in Lake Lucerne, Switzerland. Eclogae Geologicae Helvetiae 80, 241260.Google Scholar
Sims, J.D., 2012. Earthquake-induced load casts, pseudonodules, ball-and-pillow structures, and convolute lamination; additional deformation structures for paleoseismic studies. In: Cox, R.T., Tuttle, M.P., Boyd, O.S., Locat, J. (Eds.), Recent Advances in North American Paleoseismology and Neotectonics East of the Rockies, Geological Society of America, Special Paper, 493, pp. 191201.Google Scholar
Smith, C.A., Sundh, M., Mikko, H., 2014. Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences 103, 17111724.CrossRefGoogle Scholar
Smith, S.B., Karlin, R.E., Kent, G.M., Seitz, G.G., Driscoll, N.W., 2013. Holocene subaqueous paleoseismology of Lake Tahoe. Geological Society of America Bulletin 125, 691708.CrossRefGoogle Scholar
Stewart, I.S., Sauber, J., Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews 19, 13671389 CrossRefGoogle Scholar
Strasser, M., Anselmetti, F.S., Fah, D., Giardini, D., Schnellmann, M., 2006. Magnitudes and source areas of large prehistoric northern alpine earthquakes revealed by slope failures in lakes. Geology 34, 10051008. http://dx.doi.org/10.1130/G22784A.1.CrossRefGoogle Scholar
Strasser, M., Monecke, K., Schnellmann, M., Anselmetti, F.S., 2013. Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for alpine deformation. Sedimentology 60, 319341. http://dx.doi.org/10.1111/sed.12003.CrossRefGoogle Scholar
Stroup, J.S., Lowell, T.V., Breckenridge, A., 2013. A model for the demise of large, glacial Lake Ojibway, Ontario and Quebec. Journal of Paleolimnology 50, 105121.CrossRefGoogle Scholar
Upton, P., Osterberg, E.C., 2007. Paleoseismicity and mass movements interpreted from seismic-reflection data, Lake Tekapo, South Canterbury, New Zealand. Journal of Geology and Geophysics 50, 343356. http://dx.doi.org/10.1080/00288300709509841.CrossRefGoogle Scholar
Veillette, J.J., 1983. Deglaciation de la vallee superieure de I’Outaouais, le lac Barlow et le sud du lac Ojibway, Quebec. Geographie physique et Quaternaire 37, 6784.CrossRefGoogle Scholar
Veillette, J.J., 1994. Evolution and paleohydrology of glacial Lakes Barlow and Ojibway. Quaternary Science Reviews 13, 945971.CrossRefGoogle Scholar
Veillette, J.J., Paradis, S.J., Thibaudeau, P., 2010. Surficial geology, Rouyn-Noranda—Senneterre, Quebec/Geologie des formations superficielles, Rouyn-Noranda—Senneterre, Quebec. Open File 6061. Geological Survey of Canada, Ottawa.Google Scholar
Vincent, J.-S., Hardy, L., 1979. The evolution of glacial lakes Barlow and Ojibway, Quebec and Ontario. Bulletin 316, Geological Survey of Canada ,Ottawa, p. 18.Google Scholar
Vollmer, F.W., 2014. ANTEVS: Automatic Numerical Time-series Evaluation of Varying Sequences Software. Retrieved on June 23, 2015 from:www.frederickvollmer.com/antevs.Google Scholar
Zolitschka, B., Francus, P., Ojala, A.E.K., Schimmelmann, A., 2015. Varves in lake sediments — a review. Quaternary Science Reviews 117, 141.CrossRefGoogle Scholar
Supplementary material: PDF

Brooks Supplementary Material

Table S1

Download Brooks Supplementary Material(PDF)
PDF 28 KB
Supplementary material: File

Brooks Supplementary Material

Table S2

Download Brooks Supplementary Material(File)
File 52 KB
18
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evidence of late glacial paleoseismicity from submarine landslide deposits within Lac Dasserat, northwestern Quebec, Canada
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evidence of late glacial paleoseismicity from submarine landslide deposits within Lac Dasserat, northwestern Quebec, Canada
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evidence of late glacial paleoseismicity from submarine landslide deposits within Lac Dasserat, northwestern Quebec, Canada
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *