Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-12T18:41:36.168Z Has data issue: false hasContentIssue false

Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA

Published online by Cambridge University Press:  20 January 2017

Michael Dietze*
Affiliation:
GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology, Telegrafenberg Building F, D-14473 Potsdam, Germany
Elisabeth Dietze
Affiliation:
GFZ German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Telegrafenberg Building F, D-14473 Potsdam, Germany
Johanna Lomax
Affiliation:
Justus-Liebig-University Giessen, Department of Geography, Senckenbergstr. 1, D-35390 Giessen, Germany
Markus Fuchs
Affiliation:
Justus-Liebig-University Giessen, Department of Geography, Senckenbergstr. 1, D-35390 Giessen, Germany
Arno Kleber
Affiliation:
TU Dresden, Institute of Geography, Helmholtzstr. 10, D-01069 Dresden, Germany
Stephen G. Wells
Affiliation:
Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States
*
Corresponding author at: GFZ German Research Centre for Geosciences, Section 5.1 Geomorphology, Telegrafenberg Building F 427, D-14473 Potsdam, Germany. E-mail address:mdietze@gfz-potsdam.de (M. Dietze), edietze@gfz-potsdam.de (E. Dietze), johanna.lomax@geogr.uni-giessen.de (J. Lomax), markus.fuchs@geogr.uni-giessen.de (M. Fuchs), arno.kleber@tu-dresden.de (A. Kleber), steven.wells@dri.edu (S.G. Wells).

Abstract

Reconstructing the evolution of arid landscapes is challenged by limited availability of appropriate environmental archives. A widespread surface feature — stone pavement — traps aeolian fines and forms a special accretionary archive. Seven stone pavement-covered sections on basalt flows in the eastern Mojave Desert are condensed into a composite section, comprising five sedimentological units supported by an OSL-based chronology. Three of the units are of accretionary nature and each is covered by a stone pavement. They were deposited > 50.9–36.6 ka, < 36.6–14.2 ka and < 14.2 ka, and they are intimately coupled with the history of nearby Lake Mojave, which advances the current understanding of regional aeolian activity. End-member modeling analysis of grain-size distributions yielded seven sediment transport regimes. The accretionary system operates in two modes: A) episodic formation of a stone pavement by lateral processes once a vesicular horizon has formed on a barren surface; and B) accretion of dust and eventual burial of the clast layer. These findings improve current concepts about stone pavement evolution and their environmental proxy function in arid landscapes. Stone pavement-covered accretionary deposits are a new key archive that allows quantifying the relative importance of dust accretion, slope processes, soil formation and vegetation cover.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., Aitken, M.J., (1998). Dose–rate conversion factors: new data.. Ancient TL 16, 3750.Google Scholar
Al-Farraj, A., Harvey, A.M., (2000). Desert pavement characteristics on Wadi terrace and alluvial fan surfaces: Wadi Al-Bih, U.A.E. and Oman.. Geomorphology 35, 279297.Google Scholar
Anderson, K.C., Wells, S.G., Graham, R.C., (2002). Pedogenesis of vesicular horizons, Cima volcanic field, Mojave Desert, California.. Soil Science Society of America Journal 66, 878887.10.2136/sssaj2002.8780.Google Scholar
Antinao, J.L., McDonald, E.V., (2013). An enhanced role for the Tropical Pacific on the humid Pleistocence–Holocene transition in southwestern North America.. Quaternary Science Reviews 78, 319341.10.016/j.quascirev.2013.03.019.Google Scholar
Bateman, M.D., Bryant, R.G., Foster, I.D.L., Livingstone, I., Parsons, A.J., (2012). On the formation of sand ramps: a case study from the Mojave Desert.. Geomorphology 161–162, 93109.10.1016/j.geomorph.2012.04.004.Google Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates.. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Cal-Atlashttp://atlas.ca.gov/) (2014). Cal-Atlas Geospatial Clearinghouse.(29.09.2014).Google Scholar
Clarke, M.L., (1994). Infra-red stimulated luminescence ages from aeolian sand and alluvial fan deposits from the eastern Mojave Desert, California.. Quaternary Geochronology 13, 533538.(0277-3791 (94) E0054-E).Google Scholar
Cooke, R.U., Warren, A., Goudie, A.S., (1993). Desert Geomorphology. UCL Press, London.Google Scholar
Dan, J., Yaalon, D.H., Moshe, R., Nissim, S., (1982). Evolution of reg soils in Southern Israel and Sinai.. Geoderma 28, 173202.Google Scholar
Dietze, M., Dietze, E., (2013). EMMAgeo: end-member modelling algorithm and supporting functions for grain-size analysis R Package Version 0.9.1. http://CRAN.R-project.org/package=EMMAgeo(29.09.2014).Google Scholar
Dietze, M., Kleber, A., (2012). Contribution of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns.. Geomorphology 139–140, 172187.10.1016/j.geomorph.2011.10.015.Google Scholar
Dietze, M., Muhs, S., Dietze, E., (2011). Ambiguities of relative age indicators on abandoned surfaces of arid environments.. Zeitschriftfür Geomorphologie 55, Supplementary Issue 3 4975. 10.1127/0372-8854/2011/005553-0051(N.F.).Google Scholar
Dietze, E., Hartmann, K., Diekmann, B., IJmker, J., Lehmkuhl, F., Opitz, S., Stauch, G., Wünnemann, B., Borchers, A., (2012a). An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake DonggiCona, NE Tibetan Plateau, China.. Sedimentary Geology 243–244, 169180. 10.1016/j.sedgeo.2011.09.014.Google Scholar
Dietze, M., Bartel, S., Lindner, M., Kleber, A., (2012b). Formation mechanisms and control factors of vesicular soil structure.. Catena 99, 8396.10.1016/j.catena.2012.06.011.CrossRefGoogle Scholar
Dietze, M., Groth, J., Kleber, A., (2013). Alignment of stone-pavement clasts by unconcentrated overland flow — implications of numerical and physical modelling.. Earth Surface Processes and Landforms 38, 12341243.10.1002/esp.3365.Google Scholar
Dietze, E., Maussion, F., Ahlborn, M., Diekmann, B., Hartmann, K., Henkel, K., Kasper, T., Lockot, G., Opitz, S., Haberzettl, T., (2014). Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments.. Climate of the Past 10, 91106.10.5194/cp-10-91-2014.Google Scholar
Dietze, M., Kreutzer, S., Burow, C., Fuchs, M., Fischer, M., Schmidt, C., (2016). The abanico plot: visualising chronometric data with individual standard errors.. Quaternary Geochronology 31, 1218.CrossRefGoogle Scholar
Dohrenwend, J.C., McFadden, L.D., Turrin, B.D., Wells, S.G., (1984). K–Ar Dating of the Cima Volcanic Field, eastern Mojave Desert, California: Late Cenozoic volcanic history and landscape evolution.. Geology 12, 163167.10.1130/0091-7613(1984)12.Google Scholar
Dunkerley, D.L., (1995). Surface stone cover on desert hillslopes: parameterizing characteristics relevant to infiltration and surface runoff.. Earth Surface Processes and Landforms 20, 207218.10.1002/esp.3290200303.CrossRefGoogle Scholar
Enzel, J., Wells, S.G., Lancaster, N., (2003). Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts. Geological Society of America Special Paper 368, 79114.Google Scholar
Evenari, M., Noy-Meir, I., Goodall, D.W., (1985). Hot Deserts and Arid Shrublands: Part A. Elsevier, New York.Google Scholar
Francus, P., Suchodoletz, v.H., Dietze, M., Donner, R., Bouchard, F., Roy, A.J., Fagot, M., Verschuren, D., Kröpelin, S., (2013). Varved sediments of Lake Yoa (OuniangaKebir, Chad) reveal progressive drying of the Sahara during the last 6100 years.. Sedimentology 60, 911934.10.1111/j.1365-3091.2012.01370.x.Google Scholar
Fuchs, M., Dietze, M., Al-Qudah, K., Loma, J., (2015). Dating desert pavements — first results from a challenging environmental archive.. Quaternary Geochronology 1–8, 10.1016/j.quageo.2015.01.001.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., (1999). Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: part i, experimental design and statistical models.. Archaeometry 41, 339364.Google Scholar
Harden, J.W., Taylor, E.M., Hill, C., Mark, R.K., McFadden, L.D., Reheis, M.C., Sowers, J.M., Wells, S.G., (1991). Rates of soil development from four soil chronosequences in the Southern Great Basin.. Quaternary Research 35, 383399.CrossRefGoogle Scholar
Koehler, P.A., Anderson, R.S., Spaulding, W.G., (2005). Development of vegetation in the central Mojave Desert of California during the late Quaternary.. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 297311.CrossRefGoogle Scholar
Lancaster, N., (2007). Dune fields, low latitudes.Elias, S. The Encyclopedia of Quaternary Sciences Elsevier, 626642.Google Scholar
Lancaster, N., Tchakerian, V.P., (2003). Late Quaternary eolian dynamics, Mojave Desert, California.Enzel, J., Wells, S.G., Lancaster, N. Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts Geological Society of America Special Paper 368, 231249.Google Scholar
Liu, T., (2003). Blind testing of rock varnish microstratigraphy as a chronometric indicator: results on late Quaternary lava flows in the Mojave Desert, California.. Geomorphology 53, 209234.10.1016/S0169-555X(02)00331-8.Google Scholar
Liu, T., Broecker, W.S., (2007). Holocene rock varnish microstratigraphy and its chronometric application in the drylands of western USA.. Geomorphology 84, 121.10.1016/j.geomorph.2006.06.008.Google Scholar
Lomax, J., Kreutzer, S., Fuchs, M., (2014). Performance tests using the Lexsyg luminescence reader.. Geochronometria 41, 327333.CrossRefGoogle Scholar
Matthews, M.D., (1991). The effect of pretreatment on size analysis.Syvitski, J.P.M. Principles Methods and Application of Particle Size Analysis, Cambridge.3442.Google Scholar
McDonald, E.V., McFadden, L.D., Wells, S.G., (2003). Regional response of alluvial fans to the Pleistocene–Holocene climatic transition, Mojave Desert, California.Enzel, J., Wells, S.G., Lancaster, N. Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts. Geological Society of America Special Paper 368, 189205.Google Scholar
McFadden, L.D., (1988). Climatic influences on rates and processes of soil development in Quaternary deposits of southern California.. Geological Society of America Special Papers 216, 153177.CrossRefGoogle Scholar
McFadden, L.D., (2013). Strongly dust-influenced soils and what they tell us about landscape dynamics in vegetated aridlands of the Southwestern United States.Brickford, M.E. The Web of Geological Sciences: Advances. Impacts and Interactions. Geological Society of America Special Paper 500, 501532.Google Scholar
McFadden, L.D., Wells, S.G., Dohrenwend, J.C., Turrin, B.D., (1984). Cumulic soils formed in eolian parent materials on flows of the Cima volcanic field, Mojave Desert, California.Dohrenwend, Surficial Geology of the Eastern Mojave Desert, California. Geological Society of America, 1984. Annual Meeting, Field Trip 14 Guidebook.134149.Google Scholar
McFadden, L.D., Wells, S.G., Dohrenwend, J.C., (1986). Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California.. Catena 13, 361389.10.1016/0341-8162(86)90010-X.CrossRefGoogle Scholar
McFadden, L.D., Ritter, J.B., Wells, S.G., (1989). Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont, Eastern Mojave Desert, California.. Quaternary Research 32, 276290.10.1016/0033-5894(89)90094-X.Google Scholar
McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J., Forman, S.L., (1998). The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change.. Geomorphology 24, 101145.10.1016/S0169-555X(97)00095-0.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol.. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Wintle, A.G., (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability.. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations.. Radiation Measurements 23, 497500.Google Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Jan Weltje, G., (2007). Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records.. Quaternary Science Reviews 26, 230242.Google Scholar
Quade, J., (2001). Desert pavements and associated rock varnish in the Mojave Desert: how old can they be?.. Geology 29, 855858.10.1130/0091-7613.Google Scholar
R Luminescence Developer Team, , (2015). Luminescence: comprehensive luminescence dating data analysis.R Package Version 0.4.5.http://CRAN.R-project.org/package1/4Luminescence(08.11.2015).Google Scholar
Reheis, M.A., (2006). A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation.. Journal of Arid Environments 67, 487520.10.1016/j.jaridenv.2006.03.006.Google Scholar
Reheis, M.A., Redwine, J.L., (2008). Lake Manix shorelines and Afton Canyon terraces: implications for incision of Afton Canyon.. Geological Society of America Special Papers 439, 227259.Google Scholar
Reheis, M.C., Bright, J., Lund, S.P., Miller, D.M., Skipp, G., Fleck, R.J., (2012). A half-million-year record of paleoclimate from the Lake Manix Core, Mojave Desert, California.. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 1137.10.1016/j.palaeo.2012.09.002.Google Scholar
Reheis, M.C., Miller, D.M., McGeehin, J.P., Redwine, J.R., Oviatt, C.G., Bright, J., (2015). Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA.. Quaternary Research 83, 187203.10.1016/j.yqres.2014.11.003.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., HattŽ, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP.. Radiocarbon 55, 18691887.10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Rendell, H.M., Sheffer, N.L., (1996). Luminescence dating of sand ramps in the Eastern Mojave Desert.. Geomorphology 17, 187197.10.1016/0169-555X(95)00102-B.Google Scholar
Rosenberg, T.M., Preusser, F., Risberg, J., Plikk, A., Kadi, K.A., Matter, A., Fleitmann, D., (2013). Middle and Late Pleistocence humid periods recorded in palaeolake deposits of the Nafud desert, Saudi Arabia.. Quaternary Science Reviews 70, 109123.10.1016/j.quascirev.2013.03.017.Google Scholar
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., Fischer, P., Stauch, G., (2016). Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences.. Catena 137, 392405.10.1016/j.catena.2015.10.015.Google Scholar
Shao, Y., (2008). Physics and Modelling of Wind Erosion. Springer, .Google Scholar
Shinoda, M., Gillies, J.A., Mikami, M., Shao, Y., (2011). Temperate grasslands as a dust source: Knowledge, uncertainties, and challenges.. Aeolian Research 3, 271293.10.1016/j.aeolia.2011.01.001.CrossRefGoogle Scholar
Spaulding, W.G., (1990). Vegetation dynamics during the last deglaciation, southeastern Great Basin, U.S.A.. Quaternary Research 33, 188203.10.1016/0033-5894(90)90018-G.CrossRefGoogle Scholar
Stauch, G., IJmker, J., Pötsch, S., Zhao, H., Hilgers, A., Diekmann, B., Dietze, E., Hartmann, K., Opitz, S., Wünnemann, B., Lehmkuhl, F., (2012). Aeolian sediments on the north-eastern Tibetan Plateau.. Quaternary Science Reviews 57, 7184.Google Scholar
Stuut, J.-B.W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H.F., Postma, G., (2002). A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic.. Marine Geology 180, 221233.CrossRefGoogle Scholar
Sweeney, M.R., McDonald, E.V., Markley, C.E., (2013). Alluvial sediment or playas: what is the dominant source of sand and silt in desert soil vesicular A horizons, southwest USA.. Journal of Geophysical Research, Earth Surface 118, 119.10.1002/jgrf.20030.CrossRefGoogle Scholar
Tchakerian, V.P., Lancaster, N., (2002). Late Quaternary arid/humid cycles in the Mojave Desert and western Great Basin of North America.. Quaternary Science Reviews 21, 799810.10.1016/S0277-3791(O1)00128-7.Google Scholar
Vandenberghe, J., (2013). Grain size of fine-grained windblown sediment: a powerful proxy for process identification.. Earth-Science Reviews 121, 1830.10.1016/j.earscirev.2013.03.001.Google Scholar
von Suchodoletz, H., Kühn, P., Hambach, U., Dietze, M., Zöller, L., Faust, D., (2009). Loess-like and palaeosol sediments from Lanzarote (Canary Islands/Spain) — indicators of palaeoenvironmental change during the Late Quaternary.. Palaeogeography, Palaeoclimatology, Palaeoecology 278, 7187.10.1016/j.palaeo.2009.03.019.CrossRefGoogle Scholar
Walker, A.S., (1986). Eolian Landforms.Short, N.M., Blair, R.W. Jr. Geomorphology From Space: A Global Overview of Regional Landforms. Special Publication 486, NASA Sientific and Technical Branch, Washington DC.447520.Google Scholar
Wells, S.G., Dohrenwend, J.C., McFadden, L.D., Turrin, B.D., Mahrer, K.D., (1985). Late Cenozoic landscape evolution on lava flow surfaces of the Cima Volcanic field, Mojave Desert, California.. Geological Society of America Bulletin 96, 15181529.10.1130/0016-7606(1985)96.Google Scholar
Wells, S.G., McFadden, L.D., Poths, J., Olinger, C.T., (1995). Cosmogenic 3He surface-exposure dating of stone pavements: implications for landscape evolution in deserts.. Geology 23, 613616.10.1130/0091-7613(1995)023.Google Scholar
Wells, S.G., Brown, W.J., Enzel, J., Anderson, R.Y., McFadden, L.D., (2003). Late Quaternary geology and paleohydrology of pluvial Lake Mojave, southern California.Enzel, J., Wells, S.G., Lancaster, N. Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts. Geological Society of America Special Paper 368, 79114.Google Scholar
Weltje, G.J., (1997). End-member modeling of compositional data: numerical–statistical algorithms for solving the explicit mixing problem.. Mathematical Geology 29, 503549.10.1007/BF02775085.Google Scholar
Weltje, G.J., Prins, M.A., (2007). Genetically meaningful decomposition of grain-size distributions.. Sedimentary Geology 202, 409424.10.1016/j.sedgeo.2007.03.007.Google Scholar
Winograd, I.J., Landwehr, J.M., Coplen, T.B., Sharp, W.D., Riggs, A.C., Ludwig, K.R., Kolesar, P.T., (2006). Devils Hole, Nevada, d18O record extended to the mid Holocene.. Quaternary Research 66, 202212.10.1016/j.yqres.2006.06.003.CrossRefGoogle Scholar
Wood, Y.A., Graham, R.C., Wells, S.G., (2002). Surface mosaic map unit development for a desert pavement surface.. Journal of Arid Environments 52, 305317.10.1006/jare.2002.1006.Google Scholar
Wood, Y.A., Graham, R.C., Wells, S.G., (2005). Surface control of desert pavement pedologic process and landscape function, Cima Volcanic field, Mojave Desert, California.. Catena 59, 205230.10.1016/j.catena.2004.06.001.Google Scholar
Yan, Y., Xu, X., Xin, X., Yang, G., Wang, X., Yan, R., Chen, B., (2011). Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China.. Catena 87, 351356.10.1016/j.catena.2011.07.002.Google Scholar