Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-7xdgm Total loading time: 0.382 Render date: 2021-07-23T17:26:56.538Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Deglacial Hydroclimate of Midcontinental North America

Published online by Cambridge University Press:  20 January 2017

Steven L. Voelker
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Michael C. Stambaugh
Affiliation:
Department of Forestry, University of Missouri, Columbia, MO, United States
Richard P. Guyette
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Xiahong Feng
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
David A. Grimley
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Steven W. Leavitt
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Irina Panyushkina
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Eric C. Grimm
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Jeremiah P. Marsicek
Affiliation:
Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
Bryan Shuman
Affiliation:
Illinois State Geological Survey, Prairie Research Institute, University of Illinois, Champaign, IL, United States
B. Brandon Curry
Affiliation:
Laboratory for Tree-Ring Research, University of Arizona, Tucson, AZ, United States
Corresponding
E-mail address:

Abstract

During the last deglaciation temperatures over midcontinental North America warmed dramatically through the Bølling-Allerød, underwent a cool period associated with the Younger-Dryas and then reverted to warmer, near modern temperatures during the early Holocene. However, paleo proxy records of the hydroclimate of this period have presented divergent evidence. We reconstruct summer relative humidity (RH) across the last deglacial period using a mechanistic model of cellulose and leaf water δ18O and δD combined with a pollen-based temperature proxy to interpret stable isotopes of sub-fossil wood. Midcontinental RH was similar to modern conditions during the Last Glacial Maximum, progressively increased during the Bølling-Allerød, peaked during the Younger-Dryas, and declined sharply during the early Holocene. This RH record suggests deglacial summers were cooler and characterized by greater advection of moisture-laden air-masses from the Gulf of Mexico and subsequent entrainment over the mid-continent by a high-pressure system over the Laurentide ice sheet. These patterns help explain the formation of dark-colored cumulic horizons in many Great Plains paleosol sequences and the development of no-analog vegetation types common to the Midwest during the last deglacial period. Likewise, reduced early Holocene RH and precipitation correspond with a diminished glacial high-pressure system during the latter stages of ice-sheet collapse.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.

References

Amundson, D.C., and Wright jr., H.E. (1979). Forest changes in Minnesota at the end of the Pleistocene. Ecological Monographs 49, 116.CrossRefGoogle Scholar
Barbour, M.M., Roden, J.S., Farquhar, G.D., and Ehleringer, J.R. (2004). Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a P"clet effect. Oecologia 138, 426435.CrossRefGoogle Scholar
Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb, R.S., Webb III, T., and Whitlock, C. (1998). Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585.CrossRefGoogle Scholar
Bement, L.C., Carter, B.J., Varney, R.A., Cummings, L.S., and Sudbury, J.B. (2007). Paleo-environmental reconstruction and bio-stratigraphy, Oklahoma panhandle, USA. Quaternary International 169"170, 3950.CrossRefGoogle Scholar
Bement, L.C., Madden, A.S., Carter, B.J., Simms, A.R., Swindle, A.L., Alexander, H.M., Fine, S., and Benamara, M. (2014). Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA. Proceedings of the National Academy of Sciences 111, 17261731.CrossRefGoogle ScholarPubMed
Bettis III, E.A., Muhs, D.R., Roberts, H.M., and Wintle, A.G. (2003). Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.CrossRefGoogle Scholar
Bowen, G.J., Kennedy, C.D., Henne, P.D., and Zhang, T. (2012). Footprint of recycled water subsidies downwind of Lake Michigan. Ecosphere 3, 53 10.1890/ES12-00062.1.CrossRefGoogle Scholar
Broecker, W., and Putnam, A.E. (2012). How did the hydrologic cycle respond to the two-phase mystery interval?. Quaternary Science Reviews 57, 1725.CrossRefGoogle Scholar
Bromwich, D.H., Toracinta, E.R., Oglesby, R.J., Fastook, J.L., and Hughes, T.J. (2005). Climate on the southern margin of the Laurentide Ice Sheet: wet or dry?. Journal of Climate 18, 33173338.CrossRefGoogle Scholar
Buhay, W.M., Wolfe, B.B., and Schwalb, A. (2012). Lakewater paleothermometry from Deep Lake, Minnesota during the deglacial-Holocene transition from combined ?18O analyses of authigenic carbonate and aquatic cellulose. Quaternary International 260, 7682.CrossRefGoogle Scholar
Burns, R.M., and Honkala, B.H. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654 U.S. Department of Agriculture, Forest Service, Washington, D.C.Google Scholar
Campbell, M.C., Fischer, T.G., and Goble, R.J. (2011). Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA. Quaternary Research 75, 411416.CrossRefGoogle Scholar
Cappa, C.D., Hendricks, M.B., DePaolo, D.J., and Cohen, R.C. (2003). Isotope fractionation of water during evaporation. Journal of Geophysical Research 108, D16 4525 10.1029/2003JD003597.CrossRefGoogle Scholar
Castro, M.C., Warrier, R.B., Hall, C.M., and Lohmann, K.C. (2012). A late Pleistocene"Mid-Holocene noble gas and stable isotope climate and subglacial record in southern Michigan. Geophysical Research Letters 39, L19709 10.1029/2012GL053098.CrossRefGoogle Scholar
Clark, J., Grimm, E., Lynch, J., and Mueller, P. (2001). Effects of Holocene climate change on the C 4 grassland/woodland boundary in the Northern Great Plains. Ecology 82, 620636.Google Scholar
Cordova, C.E., Johnson, W.C., Mandel, R.D., and Palmer, M.W. (2011). Late Quaternary environmental change inferred from phytoliths and other soil-related proxies: case studies form central and southern Great Plains, USA. Catena 85, 87108.CrossRefGoogle Scholar
Craig, H., and Gordon, L.I. (1965). Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Tongiorgi, E. Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures Lischi and Figli, Pisa.9130.Google Scholar
Curry, B.B., and Filippelli, G.M. (2010). Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA. Limnology and Oceanography 55, 24032423.CrossRefGoogle Scholar
Curry, B.B., Grimm, E.C., Slate, J.E., Hansen, B.C., and Konen, M.E. (2007). The Late Glacial and Early Holocene Geology, Paleoecology, and Paleohydrology of the Brewster Creek Site, a Proposed Wetland Restoration Site, Pratt's Wayne Woods Forest Preserve and James "Pate" Philip State Park, Bartlett, Illinois. Illinois State Geological Survey, Champaign, Circular, 571, .Google Scholar
Curry, B.B., Grimley, D.A., and McKay III, E.D. (2011). Quaternary Glaciations in Illinois. Ehlers, J., Gibbard, P.L., Hughes, P.D. Developments in Quaternary Science vol. 15, Elsevier, Amsterdam, The Netherlands.467487.CrossRefGoogle Scholar
Curry, B.B., Gonzales, L.M., and Grimm, E.C. (2013). Correspondence regarding "Atmospheric changes in North America during the last deglaciation from dune wetland records in the Midwestern United States" by Wang, H., Stumpf, A.J., Miao, X., Lowell, T.V. (2012). Quaternary Science Reviews 70, 176178.CrossRefGoogle Scholar
Dawson, T.W., and Ehleringer, J.R. (1993). Isotopic enrichment of water in the "woody" tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica et Cosmochimica Acta 57, 34873492.CrossRefGoogle Scholar
Dorale, J.A., Wozniak, L.A., Bettis, E.A., Carpenter, S.J., Mandel, R.D., Hajic, E.R., Lopinot, N.H., and Ray, J.H. (2010). Isotopic evidence for Younger-Dryas aridity in the North American midcontinent. Geology 38, 519522.CrossRefGoogle Scholar
Edwards, T.W.D., and Fritz, P. (1986). Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario. Canada. Appl. Geochem. 1, 715723.CrossRefGoogle Scholar
Farquhar, G.D., and Lloyd, J. (1993). Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. Ehleringer, J.R., Hall, A.E., Farquhar, G.D. Stable Isotopes and Plant Carbon"Water Relations Academic Press, San Diego.4770.CrossRefGoogle Scholar
Feng, X., Reddingtion, A.L., Faiia, A.M., Posmentier, E.S., Shu, Y., and Xu, X. (2007). Changes in North American atmospheric circulation patterns indicated by wood cellulose. Geology 35, 163166.CrossRefGoogle Scholar
Forman, S.L., Oglesby, R., and Webb, R.S. (2001). Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links. Global and Planetary Change 29, 129.CrossRefGoogle Scholar
Gill, J.L., Williams, J.L., Jackson, S.T., Lininger, K.B., and Robinson, G.S. (2009). Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103.CrossRefGoogle ScholarPubMed
Gill, J.L., Williams, J.W., Jackson, S.T., Donnelly, J.P., and Schellinger, G.C. (2012). Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new high-resolution, multi-proxy record from Silver Lake, Ohio. Quaternary Science Reviews 34, 6680.CrossRefGoogle Scholar
Gonzales, L.M., and Grimm, E.C. (2009). Synchronization of late-glacial vegetation changes at Crystal Lake, Illinois, USA with the North Atlantic event stratigraphy. Quaternary Research 72, 234245.CrossRefGoogle Scholar
Gonzales, L.M., Williams, J.W., and Grimm, E.C. (2009). Expanded response surfaces: a new method to reconstruct paleoclimates from fossil pollen assemblages that lack modern analogues. Quaternary Science Reviews 28, 33153332.CrossRefGoogle Scholar
Grimley, D.A., Larsen, D., Kaplan, S.W., Yansa, C.H., Curry, B.B., and Oches, E.A. (2009). A multi-proxy palaeoclimatic record within full glacial lacustrine deposits, western Tennessee, USA. Journal of Quaternary Sciences 24, 960981.CrossRefGoogle Scholar
Grimm, E.C., and Jacobson jr., G.L. (2004). Late Quaternary vegetation history of the eastern United States. Gillespie, A.R., Porter, S.C., Atwater, B.F. The Quaternary Period in the United States Elsevier, Boston, USA.381402.Google Scholar
Grimm, E., Donovan, J., and Brown, K. (2011). A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America. Quaternary Science Reviews 30, 26262650.CrossRefGoogle Scholar
Guyette, R.P., Dey, D.C., and Stambaugh, M.C. (2008). The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits. Ecosystems 11, 643653.CrossRefGoogle Scholar
Haynes jr., C.V. (1991). Geoarcheological and paleohydrological evidence for a Clovis-age drought in North America and its bearing on extinction. Quaternary Research 35, 438450.CrossRefGoogle Scholar
Haynes jr., C.V. (2008). Younger Dryas "black mats" and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences of the United States of America 105, 65206525.CrossRefGoogle Scholar
Henderson, A.K., Nelson, D.M., Hu, F.S., Huang, Y., Shuman, B.N., and Williams, J.W. (2010). Holocene precipitation seasonality captured by a dual hydrogen and oxygen isotope approach at Steel Lake, Minnesota. Earth and Planetary Science Letters 300, 205214.CrossRefGoogle Scholar
Holliday, V.T. (2000). Folsom drought and the episodic drying on the Southern High Plains from 10,900-10,200 14C yr BP. Quaternary Research 53, 112.CrossRefGoogle Scholar
Holliday, V.T., Meltzer, D.J., and Mandel, R. (2011). Stratigraphy of the Younger Dryas Chronozone and paleoenvironmental implications: Central and Southern Great Plains. Quaternary International 242, 520533.CrossRefGoogle Scholar
Hu, F.S., Wright, H.E., Ito, E., and Lease, K. (1997). Climatic effects of glacial Lake Agassiz in the Midwestern United States during the last deglaciation. Geology 25, 207210.Google Scholar
Krist jr., F., and Schaetzl, R.J. (2001). Paleowind (11,000 BP) directions derived from lake spits in Northern Michigan. Geomorphology 38, 118.CrossRefGoogle Scholar
Leavitt, S.W., and Danzer, S.R. (1993). Methods for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65, 8789.CrossRefGoogle Scholar
Leavitt, S.W., Panyushkina, I.P., Lange, T., Wiedenhoeft, A., Cheng, L., Hunter, R.D., Hughes, J., Pranschke, F., Schneider, A.F., Moran, J., and Stieglitz, R. (2006). Climate in the Great Lakes region between 14,000 and 4000 years ago from isotopic composition of conifer wood. Radiocarbon 48, 205217.CrossRefGoogle Scholar
Leavitt, S.W., Follett, R.F., Kimble, J.M., and Pruessner, E.G. (2007). Radiocarbon and ?13C depth profiles of soil organic carbon in the U.S. Great Plains: a possible spatial record of paleoenvironment and paleovegetation. Quaternary International 162"163, 2134.CrossRefGoogle Scholar
Liu, Z., Bowen, G.J., and Welker, J.M. (2010). Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous United States. Journal of Geophysical Research 115, D22120.CrossRefGoogle Scholar
Luo, Y.H., and Sternberg, L. (1992). Hydrogen and oxygen isotope fractionation during heterotrophic cellulose synthesis. Journal of Experimental Botany 43, 750.CrossRefGoogle Scholar
Mandel, R.D. (2008). Buried paleoindian-age landscapes in stream valleys of the central plains, USA. Geomorphology 101, 342361.CrossRefGoogle Scholar
Marsicek, J.P., Shuman, B., Brewer, S., Foster, D.R., and Oswald, W.W. (2013). Moisture and temperature changes associated with the mid-Holocene Tsuga decline in the northeastern United States. Quaternary Science Reviews 80, 129142.CrossRefGoogle Scholar
Mason, J.A. (2001). Transport direction of Peoria loess in Nebraska and implications for loess sources on the central Great Plains. Quaternary Research 56, 7986.CrossRefGoogle Scholar
Mason, J.A., Swineheart, J.B., Hanson, P.R., Loope, D.B., Goble, R.J., Miao, X., and Schmeisser, R.L. (2008). Late Pleistocene dune activity in the central Great Plains, USA. Quaternary Science Reviews 30, 38583870.CrossRefGoogle Scholar
Muhs, D.R., and Bettis III, E.A. (2000). Geochemical variations in Peoria loess of western Iowa indicate paleowinds of midcontenttal North America during last glaciation. Quaternary Research 53, 4961.CrossRefGoogle Scholar
Mullins, H.T. (1998). Holocene lake level and climate change inferred from marl stratigraphy of the Cayuga Lake basin, New York. Journal of Sedimentary Research 68, 569578.CrossRefGoogle Scholar
Nelson, D.M., Hu, F.S., Grimm, E.C., Curry, B.B., and Slate, J.E. (2006). The influence of aridity and fire on Holocene prairie communities in the eastern Prairie Peninsula. Ecology 87, 25232536.CrossRefGoogle ScholarPubMed
Nordt, L., Von Fischer, J., Tieszen, L., and Tubs, J. (2008). Coherent changes in relative C 4 plant productivity and climate during the late Quaternary in the North American Great Plains. Quaternary Science Reviews 27, 16001611.CrossRefGoogle Scholar
Panyushkina, I.P., and Leavitt, S.W. (2013). Ancient boreal forests under the environmental instability of the glacial to postglacial transition in the Great Lakes region (14000"11000 years BP). Canadian Journal of Forest Research 43, 10321039.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt", C., Heaton, T.J., Hoffman, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon age calibration curves 0-50,000 years CAL BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Roden, J.S., Lin, G., and Ehleringer, J.R. (2000). A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 135.CrossRefGoogle Scholar
Schaetzl, R.J., Norman, S.L., and Attig, J.W. (2014). Optical ages on loess derived from outwash surfaces constrain the advance of the Laurentide Ice Sheet out of the Lake Superior Basin, USA. Quaternary Research 81, 318329.CrossRefGoogle Scholar
Schrag, D.R., Hampt, G., and Murray, D.W. (1996). Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 19301932.CrossRefGoogle ScholarPubMed
Shadbolt, R.P., Waller, E.A., Messina, J.P., and Winkler, J.A. (2006). Source regions of lower-tropospheric airflow trajectories for the lower peninsula of Michigan: a 40-year air mass climatology. Journal of Geophysical Research 111, D21117 10.1029/2005JD006657.CrossRefGoogle Scholar
Shane, L.C.K., and Anderson, K.H. (1993). Intensity, gradients and reversals in late glacial environmental change in east-central North America. Quaternary Science Reviews 12, 307320.CrossRefGoogle Scholar
Shuman, B.N., Webb III, T., Bartlein, P.J., and Williams, J.W. (2002a). The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone. Quaternary Science Reviews 21, 17771791.CrossRefGoogle Scholar
Shuman, B.N., Bartlein, P.J., Logar, N., Newby, P., and Webb III, T. (2002b). Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21, 17931805.CrossRefGoogle Scholar
Shuman, B., Newby, P., Huang, Y., and Webb III, T. (2004). Evidence for the close climatic control of New England vegetation history. Ecology 85, 12971310.CrossRefGoogle Scholar
Shuman, B.N., Newby, P., and Donnelly, J.P. (2009). Abrupt climate change as an important agent of ecological change in the northeast U.S. throughout the past 15,000 years. Quaternary Science Reviews 28, 16931709.CrossRefGoogle Scholar
Simpkins, W.W. (1995). Isotopic composition of precipitation in central Iowa. Journal of Hydrology 172, 185207.CrossRefGoogle Scholar
Song, X., Barbour, M.M., Farquhar, G.D., Vann, D.R., and Helliker, B.R. (2013). Transpiration rate relates to within- and across species variations in effective pathlength in a leaf water model of oxygen isotope enrichment. Plant, Cell and Environment 36, 13381351.CrossRefGoogle Scholar
Stambaugh, M.C., Guyette, R.P., McMurry, E.R., Cook, E.R., Meko, D.M., and Lupo, A.C. (2011). Drought duration and frequency in the U.S. Corn Belt during the last millennium (AD 992-2004). Agricultural and Forest Meteorology 151, 154162.CrossRefGoogle Scholar
Sternberg, L.S.L. (1989). Oxygen and hydrogen isotope measurements in plant cellulose analysis. Linskens, H.F., Jackson, J.F. Plant FibresModern Methods of Plant Analysis V. Springer-Verlag, New York.10891099.Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., and Fines, P. (2006). Millenial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research 111, D09102.CrossRefGoogle Scholar
Voelker, S.L. (2011). Age-dependent changes in environmental influences on tree growth and their implications for forest responses to climate change. Meinzer, F.C., Lachenbruch, B., Dawson, T.E. Size and Age-related Changes in Tree Structure and Function Springer, New York, USA.455479.CrossRefGoogle Scholar
Voelker, S.L., Noirot-Cosson, P.-E., Stambaugh, M.C., McMurry, E.R., Meinzer, F.C., Lachenbruch, B., and Guyette, R.P. (2012). Spring temperature responses of oaks are synchronous with North Atlantic conditions during the last deglaciation. Ecological Monographs 82, 169187.CrossRefGoogle Scholar
Voelker, S.L., Brooks, J.R., Meinzer, F.C., Roden, J.S., Pazdur, A., Pawelczyk, S., Hartsough, P., Snyder, K., Plavcov", L., and "antr??ek, J. (2014). Isolating relative humidity: dual isotopes ?18O and ?D as deuterium deviations from the global meteoric water line. Ecological Applications 24, 960975.CrossRefGoogle Scholar
Wang, H., Stumpf, A.J., Miao, X., and Lowell, T.V. (2012). Atmospheric changes in North America during the last deglaciation from dune-wetland records in the Midwestern United States. Quaternary Science Reviews 58, 124134.CrossRefGoogle Scholar
Wang, H., Stumpf, A.J., and Miao, X. (2013). Reply to comments by Curry et al. (2013) on "Atmospheric changes in North America during the last deglaciation from dune-wetland records in the Midwestern United States". Quaternary Science Reviews 80, 200203.CrossRefGoogle Scholar
Webb III, T., and Bryson, R.A. (1972). Late- and postglacial climatic change in the northern Midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research 2, 70115.CrossRefGoogle Scholar
Webb III, T., Anderson, K.H., Bartlein, P.J., and Webb, R. (1998). Late Quaternary climate change in Eastern North America: a comparison of pollen-derived estimates with climate model results. Quaternary Science Reviews 17, 587606.CrossRefGoogle Scholar
Williams, J.W., and Jackson, S.T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475482.CrossRefGoogle Scholar
Williams, J.W., Shuman, B.N., Webb III, T., Bartlein, P.J., and Leduc, P. (2004). Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecological Monographs 74, 309334.CrossRefGoogle Scholar
Williams, J.W., Shuman, B., and Bartlein, P.J. (2009). Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Global and Planetary Change 66, 195207.CrossRefGoogle Scholar
Winkler, M., Swain, A.M., and Kutzbach, J.E. (1986). Middle Holocene dry period in the Northern Midwestern United States: lake levels and pollen stratigraphy. Quaternary Research 25, 235250.CrossRefGoogle Scholar
Wright, H., Stefanova, I., Tian, J., Brown, T., and Hu, F.S. (2004). A chronological framework for the Holocene vegetational history of central Minnesota: the Steel Lake pollen record. Quaternary Science Reviews 23, 611626.CrossRefGoogle Scholar
Yapp, C.J., and Epstein, S. (1977). Climatic implications of D/H ratios of meteoric water over North America (9500-22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen. Earth and Planetary Science Letters 3, 333350.CrossRefGoogle Scholar
Yu, Z., and Eicher, U. (1998). Abrupt climate oscillations during the last deglaciation in central North America. Science 282, 22352238.CrossRefGoogle ScholarPubMed
Yu, Z., and Wright jr., H.E. (2001). Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth-Science Reviews 52, 333369.CrossRefGoogle Scholar
Supplementary material: File

Voelker et al. supplementary material

Supplementary Material

Download Voelker et al. supplementary material(File)
File 24 KB
18
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deglacial Hydroclimate of Midcontinental North America
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Deglacial Hydroclimate of Midcontinental North America
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Deglacial Hydroclimate of Midcontinental North America
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *