Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jtg5s Total loading time: 0.228 Render date: 2021-09-16T16:37:51.928Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Control of wind strength and frequency in the Aral Sea basin during the late Holocene

Published online by Cambridge University Press:  20 January 2017

Philippe Sorrel*
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Hedi Oberhänsli
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Nikolaus Boroffka
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Danis Nourgaliev
Affiliation:
Faculty of Geology, Kazan State University, Kazan, Russia
Peter Dulski
Affiliation:
Sektion 3.3, GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany
Ursula Röhl
Affiliation:
DFG Research Center for Ocean Margins (RCOM), Bremen University, Leobener Strasse, D-28359 Bremen, Germany
*Corresponding
*Corresponding author. Fax: +33 231 565 757. E-mail address: philippe.sorrel@unicaen.fr (P. Sorrel).

Abstract

Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Laboratoire Morphodynamique continentale et côtière (M2C), (UMR 6143 CNRS), Université de Caen Basse-Normandie, 24 rue des Tilleuls, F-14000 Caen, France.

References

Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., and Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, (2001). 535556.CrossRefGoogle Scholar
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., and Zielinski, G.A. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, (1993). 527529.CrossRefGoogle Scholar
Austin, P., Mackay, A., Palagushkina, O., and Leng, M. A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr. Quaternary Research 67, (2007). 383393.CrossRefGoogle Scholar
Barlow, M.H., and Cullen, B. Drought in Central and southwest Asia: La Niña, the warm pool and the Indian precipitation. Journal of Climate 15, 7 (2002). 697700.2.0.CO;2>CrossRefGoogle Scholar
Bolle, M.P., and Adatte, T. Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals 36, 2 (2001). 249261.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Bradley, R.S. 1000 years of climate change. Science 288, (2000). 13531354.CrossRefGoogle Scholar
Bradley, R.S., (2003). Climate of the last Millenium. Holocene Working Group Workshop, Bjerknes Centre for Climate Research, August 2003.Google Scholar
Briffa, K.R. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews 19, (2000). 87105.CrossRefGoogle Scholar
Chub, V.E. Estimation of aerosol influence on climatic characteristics of the Aral Sea basin (Otzenka vliyaniya aerozolei na klimaticheskie kharakteristiki baseina Aral'skogo moray). Problems of Desert Development 3–4, (1998). 5055. (in Russian) Google Scholar
Clark, M.P., Serreze, M.C., and Robinson, D.A. Atmospheric controls on Eurasian snow extent. International Journal of Climatology 19, (1999). 2740.3.0.CO;2-N>CrossRefGoogle Scholar
Cook, E.R., Esper, J., and D'Arrigo, R.D. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quaternary Science Reviews 23, (2004). 20632074.CrossRefGoogle Scholar
Crowley, T.J. Causes of climate change over the past 1000 years. Science 289, (2000). 270277.CrossRefGoogle ScholarPubMed
Demory, F., Oberhänsli, H., Nowaczyk, N.R., Gottschalk, M., Wirth, R., and Naumann, R. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Global and Planetary Change 46, (2005). 145166.CrossRefGoogle Scholar
Druyan, L.M., and Rind, D. Implications of climate change on a regional scale. Graber, M., Cohen, A., Magaritz, M. Proceedings of the International Workshop on Regional Implications of Future Climate Change, September 1993 vol. 311, (1991). 7578.Google Scholar
Duan, A.M., and Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, (2005). 793807.CrossRefGoogle Scholar
Friedrich, J., and Oberhänsli, H. Hydrochemical properties of the Aral Sea water in summer 2002. Journal of Marine Systems 47, (2004). 7788.CrossRefGoogle Scholar
Galaeva, O.S. On the monitoring of carrying out of sandy salty aerosol from drained part of bottom of the Aral Sea (K monitoringu vinosa peschanih I solevih aerosolei s visohshego dna Aral'skogo moray). Problems of Desert Development 3–4, (1998). 1721. (in Russian) Google Scholar
Gruza, G.V., Ran'kova, E.Ya., Kleschenko, L.K., and Aristova, L.N. Relationship between climatic anomalies on territory of Russia and phenomena El Nino-South Oscillation. Meteorology and Hydrology 5, (1999). 3251. (in Russian) Google Scholar
Heim, C., (2005). Die Geochemische Zusammensetzung der Sedimente im Aralsee und Sedimentationsprozesse während der letzten 100 Jahre. Diploma thesis, Alfred-Wegener-Institut für Polar-und Meeresforschung, Bremerhaven. 89 pp.Google Scholar
Jansen, J.H.F., van der Gaast, S.J., Koster, B., and Vaars, A. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology 151, (1998). 143153.CrossRefGoogle Scholar
Khan, V.M., Vilfand, R.M., and Zavialov, P. Long-term variability of air temperature in the Aral sea region. Journal of Marine Systems 47, (2004). 2533.CrossRefGoogle Scholar
Létolle, R., and Mainguet, M. Aral. (1993). Springer Verlag, Paris. 358 pp.Google Scholar
Lioubimtseva, E. Arid environments. Shahgedanova, M. Physical Geography of Northern Eurasia. (2002). Oxford University Press, Oxford. 571 pp.Google Scholar
Lioubimtseva, E., Cole, R., Adams, J.M., and Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments 62, (2005). 285308.CrossRefGoogle Scholar
Mainguet, M., Létolle, R., and Dumay, F. Le système régional d'action éolienne (SRAE) du bassin de l'Aral (Kazakhstan, Ouzbékistan et Turkménistan). C.R. Geosciences 334, (2002). 475480.CrossRefGoogle Scholar
Mann, M.E., and Jones, P.D. Global surface temperatures over the past two millennia. Geophysical Research Letters 30, 15 (2003). 1820 http://dx.doi.org/10.1029/2003GL017814, 2003CrossRefGoogle Scholar
Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Bloomfield, P., Bond, G.C., Alley, R.B., Gow, A.J., Grootes, P.M., Meese, D.A., Ram, M., Taylor, K.C., and Wumkes, W. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 261, (1994). 195197.CrossRefGoogle Scholar
Meeker, L.D., and Mayewski, P.A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. The Holocene 12, 3 (2002). 257266.CrossRefGoogle Scholar
Meese, P.M., Alley, R.B., Gow, A.J., Grootes, P., Mayewski, P.A., Ram, D.A., Taylor, K.C., Waddington, E.D., and Zielinski, G. Preliminary Depth-Age Scale of the GISP2 Ice Core. (1994). U.S. Army Cold Regions Research Laboratory Publication SR94-01, Hanover, NH.Google Scholar
Middleton, N.J. Geography of dust storms in South-West Asia. Journal of Climatology 6, (1986). 183196.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlén, W. Highly variable northern temperatures reconstructed from low- and high-resolution proxy data. Nature 433, (2005). 613617.CrossRefGoogle ScholarPubMed
Nezlin, N.P., Kostianoy, A.G., and Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. Journal of Arid Environments 62, (2005). 677700.CrossRefGoogle Scholar
Nourgaliev, D.K., Heller, F., Borisov, A.S., Hajdas, I., Bonani, G., Iassonov, P.G., and Oberhänsli, H. Very high resolution paleosecular variation record for the last 1200 years from the Aral Sea. Geophysical Research Letters 30, 17 (2003). 4-14-4.Google Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., and Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, (1995). 19621964.CrossRefGoogle Scholar
Orlovsky, L., and Orlovsky, N. White sand storms in Central Asia. Yang, Youlin, Squires, V., and Lu, Qi Global Alarm: Dust and Sand Storms from the World's Drylands. (2002). UNCCD, Bangkok. 169201.Google Scholar
Orlovsky, L., Orlovsky, N., and Durdyev, A. Dust storms in Turkmenistan. Journal of Arid Environments 60, (2005). 8397.CrossRefGoogle Scholar
Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., and Stephenson, D.B. Observed trends and teleconnections of the Siberian High: a recently declining center of action. Journal of Climate 18, (2005). 14111422.CrossRefGoogle Scholar
Petschick, R., (2000). MacDiff 4.2.5 Bedienungsanleitung. (http://servemac.geologie.uni-frankfurt.de/Rainer/html).Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Lawrence Edwards, R., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weiyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal. yr BP. Radiocarbon 46, 3 (2004). 10291058.CrossRefGoogle Scholar
Roberts, N., and Wright, H.E. Vegetational, lake-level, and climatic history of the Near East and Southwest Asia. Wright, H.E. Global Climates since the Last Glacial Maximum. (1993). University of Minnesota Press, 194220.Google Scholar
Röhl, U., and Abrams, L.J. High-resolution, downhole and non-destructive core measurements from Sites 999 and 1001 in the Carribean Sea: application to the Late Paleocene Thermal Maximum. Proceedings of the Ocean Drilling Program (ODP) Scientific Results vol. 165, (2000). Ocean Drilling Programm, College Station, TX. 191204.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L., and Hayes, A. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 578593.Google Scholar
Romanov, N.N. Dust storms in Central Asia (Pyl'nye buri Srednei Asii). (1961). Samarkand University, Tashkent. 198 pp. (in Russian) Google Scholar
Romanov, N.N. Forecast of dust storms and advective dust haze. Instruction in short-term weather forecasts, Central Asia. Gidrometeoizdat Leningrad 2, 3 (1986). 210216. (in Russian) Google Scholar
Sahsamanoglou, H.S., Makrogiannis, T.J., and Kallimopoulos, P.P. Some aspects of the basic characteristics of the Siberian anticyclone. International Journal of Climatology 11, (1991). 827839.CrossRefGoogle Scholar
Savelieva, N.I., Semiletov, I.P., Vasilevskaya, L.N., and Pugach, S.P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Progress in Oceanography 47, (1991). 279297.CrossRefGoogle Scholar
Seredkina, E.A. Dust storms in Kazakhstan (Pyl'nie buri v Kazakhstane). Proceedings of KazNIGMI 15, (1960). 5459. (in Russian) Google Scholar
Singer, A., Zobeck, T., Poberezsky, L., and Argaman, E. The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments 54, (2003). 705728. http://dx.doi.org/10.1006/jare.2002.1084 CrossRefGoogle Scholar
Small, E.E., Giorgi, F.G., Sloan, L.S., and Hostetler, S. The effects of desiccation and climatic change on the hydrology of the Aral Sea. Journal of Climate 14, (2001). 300322.2.0.CO;2>CrossRefGoogle Scholar
Sorrel, P., (2006). The Aral Sea: a palaeoclimate archive. PhD thesis, University Potsdam (Germany) and University Claude Bernard-Lyon I (France), . 109 pp.Google Scholar
Sorrel, P., Popescu, S.-M., Head, M.J., Suc, J.P., Klotz, S., and Oberhänsli, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 2–4 (2006). 304327.CrossRefGoogle Scholar
Sorrel, P., Popescu, S.-M., Klotz, S., Suc, J.P., and Oberhänsli, H. Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quaternary Research 67, 3 (2007). 357370.CrossRefGoogle Scholar
Subbotina, O.I. Atmospheric circulation. Muminova, F.A., and Inagamova, S.I. Change of Climate in Middle Asia. (1995). SARNIIGMI Publishing, Tashkent. 834. in Russian Google Scholar
Usmanov, V.O. Estimation of the influence of dusty salt transfer on the productivity of agricultural crops in the Priaral region (Otzenka vliyaniya sole-pyleperenosa na productivnost' sel'skohozyaistvennih kultur v Priaral'skom regione). Problems of Desert Development 3–4, (1968). 147151. (in Russian) Google Scholar
Zavialov, P.O. Physical Oceanography of the Dying Aral Sea. (2005). Springer Verlag, published in association with Praxis Publishing, Chichester, UK. 146 pp.Google Scholar
Zolotokrylin, A.N. Dust storms in Turanian Lowland. Proceedings of Russian Academy of Sciences Geographic Series 6, (1996). 4854. (in Russian) Google Scholar
31
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Control of wind strength and frequency in the Aral Sea basin during the late Holocene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Control of wind strength and frequency in the Aral Sea basin during the late Holocene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Control of wind strength and frequency in the Aral Sea basin during the late Holocene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *