Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-9w8k4 Total loading time: 0.625 Render date: 2022-12-07T11:08:23.616Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A continental perspective on the timing of environmental change during the last glacial stage in Australia

Published online by Cambridge University Press:  12 May 2021

Haidee Cadd*
Affiliation:
Department of Earth Sciences and Sprigg Geobiology Centre, University of Adelaide, SA, Australia ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, NSW, Australia Earth and Sustainability Research Centre (ESSRC), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
Lynda Petherick
Affiliation:
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, New Zealand
Jonathan Tyler
Affiliation:
Department of Earth Sciences and Sprigg Geobiology Centre, University of Adelaide, SA, Australia
Annika Herbert
Affiliation:
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
Tim J Cohen
Affiliation:
ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, NSW, Australia School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, Australia
Kale Sniderman
Affiliation:
ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, NSW, Australia School of Earth Sciences, University of Melbourne, VIC, Australia
Timothy T. Barrows
Affiliation:
School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, Australia School of the Environment, Geography and Geosciences, University of Portsmouth, United Kingdom
Reka H. Fulop
Affiliation:
School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, Australia Australia's Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights NSW 2234, Australia
Jasper Knight
Affiliation:
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
A. Peter Kershaw
Affiliation:
School of Earth, Atmosphere and Environment, Monash University, VIC, Australia
Eric A. Colhoun
Affiliation:
School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
Mathew R.P. Harris
Affiliation:
Earth and Sustainability Research Centre (ESSRC), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia School of Geography, Geology and the Environment, Keele University, Staffordshire, United Kingdom
*
*Corresponding author at: School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2033, NSW, Australia E-mail addresss: h.cadd@unsw.edu.au (H. Cadd)

Abstract

The timing and duration of the coldest period in the last glacial stage, often referred to as the last glacial maximum (LGM), has been observed to vary spatially and temporally. In Australia, this period is characterised by colder, and in some places more arid, climates than today. We applied Monte-Carlo change point analysis to all available continuous proxy records covering this period, primarily pollen records, from across Australia (n = 37) to assess this change. We find a significant change point occurred (within uncertainty) at 28.6 ± 2.8 ka in 25 records. We interpret this change as a shift to cooler climates, associated with a widespread decline in biological productivity. An additional change point occurred at 17.7 ± 2.2 ka in 24 records. We interpret this change as a shift towards warmer climates, associated with increased biological productivity. We broadly characterise the period between 28.6 (± 2.8) – 17.7 (± 2.2) ka as an extended period of maximum cooling, with low productivity vegetation that may have occurred as a combined response to reduced temperatures, lower moisture availability and atmospheric CO2. These results have implications for how the spatial and temporal coherence of climate change, in this case during the LGM, can be best interrogated and interpreted.

Type
Thematic Set: Southern Hemisphere Last Glacial Maximum (SHeMax)
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloway, B. V., Lowe, D.J., Barrell, D.J.A., Newnham, R.M., Almond, P.C., Augustinus, P.C., Bertler, N.A.N., Carter, L., Litchfield, N.J., McGlone, M.S., Shulmeister, J., Vandergoes, M.J., Williams, P.W., 2007. Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science 22, 935. https://doi.org/10.1002/jqs.1079CrossRefGoogle Scholar
Atahan, P., Heijnis, H., Dodson, J., Grice, K., Le Métayer, P., Taffs, K., Hembrow, S., Woltering, M., Zawadzki, A., 2014. Pollen, biomarker and stable isotope evidence of late Quaternary environmental change at Lake McKenzie, southeast Queensland. Journal of Paleolimnology 53, 139156. https://doi.org/10.1007/s10933-014-9813-3CrossRefGoogle Scholar
Bakker, E.S., Gill, J.L., Johnson, C.N., Vera, F.W.M., Sandom, C.J., Asner, G.P., Svenning, J.-C., 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences 113, 847855. https://doi.org/10.1073/pnas.1502545112CrossRefGoogle ScholarPubMed
Barr, C., Tibby, J., Moss, P.T., Halverson, G.P., Marshall, J.C., McGregor, G.B., Stirling, E., 2017. A 25,000-year record of environmental change from Welsby Lagoon, North Stradbroke Island, in the Australian subtropics. Quaternary International 449, 106118. https://doi.org/10.1016/j.quaint.2017.04.011CrossRefGoogle Scholar
Barrows, T.T., Almond, P., Rose, R., Keith Fifield, L., Mills, S.C., Tims, S.G., 2013. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand. Quaternary Science Reviews 74, 139159. https://doi.org/10.1016/j.quascirev.2013.04.010CrossRefGoogle Scholar
Barrows, T.T., Fitzsimmons, K.E., Mills, S.C., Tumney, J., Pappin, D., Stern, N., 2020. Late Pleistocene lake level history of Lake Mungo, Australia. Quaternary Science Reviews 238, 106338. https://doi.org/10.1016/j.quascirev.2020.106338CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K., Cresswell, R.G., 2001. Late pleistocene glaciation of the Kosciouszko massif, Snowy Mountains, Australia. Quaternary Research 55, 179189. https://doi.org/10.1006/qres.2001.2216CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K., Cresswell, R.G., 2002. The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews 21, 159173. https://doi.org/10.1016/S0277-3791(01)00109-3CrossRefGoogle Scholar
Beaulieu, C., Killick, R., 2018. Distinguishing trends and shifts from memory in climate data. Journal of Climate 31, 95199543. https://doi.org/10.1175/JCLI-D-17-0863.1CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474. https://doi.org/10.1214/11-BA618CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., Aquino-López, M.A., 2020. A Review of Statistics in Palaeoenvironmental Research. Journal of Agricultural, Biological and Environmental Statistics 25, 1731. https://doi.org/10.1007/s13253-019-00374-2CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., Bennett, K.D., Reimer, P.J., 2018. Double the dates and go for Bayes — Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews 188, 5866. https://doi.org/10.1016/j.quascirev.2018.03.032CrossRefGoogle Scholar
Black, M.P., Mooney, S.D., Martin, H.A., 2006. A 43,000-year vegetation and fire history from Lake Baraba, New South Wales, Australia. Quaternary Science Reviews 25, 30033016. https://doi.org/10.1016/j.quascirev.2006.04.006CrossRefGoogle Scholar
Bond, W.J., Woodward, F.I., Midgley, G.F., 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165, 525538. https://doi.org/10.1111/j.1469-8137.2004.01252.xCrossRefGoogle Scholar
Bostock, H.C., Opdyke, B.N., Gagan, M.K., Kiss, A.E., Fifield, L.K., 2006. Glacial/interglacial changes in the East Australian current. Climate Dynamics 26, 645659. https://doi.org/10.1007/s00382-005-0103-7CrossRefGoogle Scholar
Bøtter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A.S., 2000. Advances in luminescence measurement systems. Radiation Measurements 32, 523528.CrossRefGoogle Scholar
Bowler, J.M., Gillespie, R., Johnston, H., Boljkovac, K., 2012. Wind v water: Glacial maximum records from the Willandra Lakes, in: Peopled Landscapes: Archaeological and Biogeographic Approaches to Landscapes. ANU Press, pp. 271296. https://doi.org/10.22459/TA34.01.2012.13Google Scholar
Builth, H., Kershaw, A.P., White, C., Roach, A., Hartney, L., McKenzie, M., Lewis, T., Jacobsen, G., 2008. Environmental and cultural change on the Mt Eccles lava-flow landscapes of southwest Victoria, Australia. Holocene 18, 413424. https://doi.org/10.1177/0959683607087931CrossRefGoogle Scholar
Burrows, M.A., Heijnis, H., Gadd, P., Haberle, S.G., 2016. A new late Quaternary palaeohydrological record from the humid tropics of northeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 451, 164182. https://doi.org/10.1016/j.palaeo.2016.03.003CrossRefGoogle Scholar
Chalson, J.M., Martin, H.A., 2008. A 38,000 year history of the vegetation at Penrith lakes, New South Wales. Proceedings of the Linnean Society of New South Wales 129, 97111. https://doi.org/10.1063/1.2825835Google Scholar
Chang, J.C., Shulmeister, J., Woodward, C., Steinberger, L., Tibby, J., Barr, C., 2015. A chironomid-inferred summer temperature reconstruction from subtropical Australia during the last glacial maximum (LGM) and the last deglaciation. Quaternary Science Reviews 122, 282292. https://doi.org/10.1016/j.quascirev.2015.06.006CrossRefGoogle Scholar
Chivas, A.R., Garcı́a, A., van der Kaars, S., Couapel, M.J.J., Holt, S., Reeves, J.M., Wheeler, D.J., et al. 2001. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: An overview. Quaternary International 82, 1946. https://doi.org/10.1016/S1040-6182(01)00029-5CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., et al. 2009. The Last Glacial Maximum. Science 325, 710714. https://doi.org/10.1126/science.1172873CrossRefGoogle ScholarPubMed
Clark, P.U., Mix, A.C., 2002. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 17. https://doi.org/10.1016/S0277-3791(01)00118-4CrossRefGoogle Scholar
Colhoun, E.A., 2000. Vegetation and climate change during the Last Interglacial-Glacial cycle in western Tasmania, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 195209. https://doi.org/10.1016/S0031-0182(99)00101-7CrossRefGoogle Scholar
Colhoun, E.A., Pola, J.S., Barton, C.E., Heijnis, H., 1999. Late Pleistocene vegetation and climate history of Lake Selina, western Tasmania. Quaternary International 57–58, 523. https://doi.org/10.1016/S1040-6182(98)00046-9CrossRefGoogle Scholar
Colhoun, E.A., van de Geer, G., 1986. Holocene to Middle Last Glaciation Vegetation History at Tullabardine Dam, Western Tasmania. Proceedings of the Royal Society of London. Series B, Biological Sciences 229, 177207.Google Scholar
Cowling, S.A., Sykes, M.T., 1999. Physiological significance of low atmospheric CO2 for plant-climate interactions. Quaternary Research 52, 237242. https://doi.org/10.1006/qres.1999.2065CrossRefGoogle Scholar
Cupper, M.L., 2005. Last glacial to Holocene evolution of semi-arid rangelands in southeastern Australia. Holocene 15, 541553. https://doi.org/10.1191/0959683605hl829rpCrossRefGoogle Scholar
Cupper, M.L., 2006. Luminescence and radiocarbon chronologies of playa sedimentation in the Murray Basin, southeastern Australia. Quaternary Science Reviews 25, 25942607. https://doi.org/10.1016/j.quascirev.2005.09.011CrossRefGoogle Scholar
D'Costa, D.M., Edney, P., Kershaw, A.P., Deckker, P. De, , 1989. Late Quaternary Palaeoecology of Tower Hill, Victoria, Australia. Journal of Biogeography 16, 461482. https://doi.org/10.2307/2845109CrossRefGoogle Scholar
De Deckker, P., Arnold, L.J., van der Kaars, S., Bayon, G., Stuut, J.B.W., Perner, K., Lopes dos Santos, R., et al. , 2019. Marine Isotope Stage 4 in Australasia: A full glacial culminating 65,000 years ago – Global connections and implications for human dispersal. Quaternary Science Reviews 204, 187207. https://doi.org/10.1016/j.quascirev.2018.11.017CrossRefGoogle Scholar
De Deckker, P., Norman, M., Goodwin, I.D., Wain, A., Gingele, F.X., 2010. Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 205223. https://doi.org/10.1016/j.palaeo.2009.11.013CrossRefGoogle Scholar
Dodson, J., 1977. Late Quaternary palaeoecology of Wyrie Swamp, southeastern South Australia. Quaternary Research 8, 97114. https://doi.org/10.1016/0033-5894(77)90058-8CrossRefGoogle Scholar
Dodson, J.R., 1975. Vegetation history and water fluctuations at lake leake, South-Eastern South Australia. II.* 50 000 B.P. To 10 000 B.P. Australian Journal of Botany 23, 815831. https://doi.org/10.1071/BT9750815CrossRefGoogle Scholar
Dodson, J.R., Wright, R.V.S., 1989. Humid to arid to subhumid vegetation shift on Pilliga Sandstone, Ulungra Springs, New South Wales. Quaternary Research 32, 182192. https://doi.org/10.1016/0033-5894(89)90074-4CrossRefGoogle Scholar
Donders, T.H., Wagner, F., Visscher, H., 2006. Late Pleistocene and Holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 417439. https://doi.org/10.1016/j.palaeo.2006.04.008CrossRefGoogle Scholar
Duller, G.A.T., 2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence datin. Boreas 37, 589612. https://doi.org/10.1111/j.1502-3885.2008.00051.xCrossRefGoogle Scholar
Ellerton, D., Shulmeister, J., Woodward, C., Moss, P., 2017. Last Glacial Maximum and Last Glacial–Interglacial Transition pollen record from northern NSW, Australia: evidence for a humid late Last Glacial Maximum and dry deglaciation in parts of eastern Australia. Journal of Quaternary Science 32, 717728. https://doi.org/10.1002/jqs.2960CrossRefGoogle Scholar
Falster, G., Tyler, J., Grant, K., Tibby, J., Turney, C., Löhr, S., Jacobsen, G., Kershaw, A.P., 2018. Millennial-scale variability in south-east Australian hydroclimate between 30,000 and 10,000 years ago. Quaternary Science Reviews 192, 106122. https://doi.org/10.1016/j.quascirev.2018.05.031CrossRefGoogle Scholar
Ferland, M.A., Roy, P.S., 1997. South-eastern Australia: a sea-level dependent, cool-water carbonate margin, in: James, N.P., Clarke, J.D.. (Eds.), Cool Water Carbonates. SEPM special publication No. 56, pp. 3752.CrossRefGoogle Scholar
Field, E., Tyler, J., Gadd, P.S., Moss, P., McGowan, H., Marx, S., 2018. Coherent patterns of environmental change at multiple organic spring sites in northwest Australia: Evidence of Indonesian-Australian summer monsoon variability over the last 14,500 years. Quaternary Science Reviews 196, 193216. https://doi.org/10.1016/j.quascirev.2018.07.018CrossRefGoogle Scholar
Field, J.H., Dodson, J.R., Prosser, I.P., 2002. A Late Pleistocene vegetation history from the Australian semi-arid zone. Quaternary Science Reviews 21, 10231037. https://doi.org/10.1016/S0277-3791(01)00057-9CrossRefGoogle Scholar
Finch, J.M., Hill, T.R., 2008. A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: Reconstructing forest history in Maputaland. Quaternary Research 70, 442450. https://doi.org/10.1016/j.yqres.2008.07.003CrossRefGoogle Scholar
Fink, D., McKelvey, B., Hannan, D., Newsome, D., 2000. Cold rocks, hot sands: In-situ cosmogenic applications in Australia at ANTARES. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 172, 838846. https://doi.org/10.1016/S0168-583X(00)00199-3CrossRefGoogle Scholar
Fitzsimmons, K.E., Cohen, T.J., Hesse, P.P., Jansen, J., Nanson, G.C., May, J.H., Barrows, T.T., et al. , 2013. Late Quaternary palaeoenvironmental change in the Australian drylands. Quaternary Science Reviews 74, 7896. https://doi.org/10.1016/j.quascirev.2012.09.007CrossRefGoogle Scholar
Fitzsimmons, K.E., Stern, N., Murray-Wallace, C. V., 2014. Depositional history and archaeology of the central Lake Mungo lunette, Willandra Lakes, southeast Australia. Journal of Archaeological Science 41, 349364. https://doi.org/10.1016/j.jas.2013.08.004CrossRefGoogle Scholar
Fitzsimmons, K.E., Stern, N., Murray-Wallace, C. V., Truscott, W., Pop, C., 2015. The Mungo mega-lake event, semi-arid Australia: Non-linear descent into the last ice age, implications for human behaviour. PLoS ONE 10, 119. https://doi.org/10.1371/journal.pone.0127008CrossRefGoogle ScholarPubMed
Fletcher, M.-S., Thomas, I., 2010. A quantitative Late Quaternary temperature reconstruction from western Tasmania, Australia. Quaternary Science Reviews 29, 23512361. https://doi.org/10.1016/j.quascirev.2010.06.012CrossRefGoogle Scholar
Forbes, M.S., Bestland, E.A., Wells, R.T., Krull, E.S., 2007. Palaeoenvironmental reconstruction of the late pleistocene to early holocene robertson cave sedimentary deposit, Naracoorte, South Australia. Australian Journal of Earth Sciences 54, 541559. https://doi.org/10.1080/08120090601078388CrossRefGoogle Scholar
González-Orozco, C.E., Ebach, M.C., Laffan, S., Thornhill, A.H., Knerr, N.J., Schmidt-Lebuhn, A.N., Cargill, C.C., et al. , 2014. Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0092558CrossRefGoogle ScholarPubMed
Haberlah, D., Williams, M.A.J., Halverson, G., McTainsh, G.H., Hill, S.M., Hrstka, T., Jaime, P., et al. , 2010. Loess and floods: High-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia. Quaternary Science Reviews 29, 26732693. https://doi.org/10.1016/j.quascirev.2010.04.014CrossRefGoogle Scholar
Harle, K.J., Heijnis, H., Chisari, R., Kershaw, A.P., Zoppi, U., Jacobsen, G., 2002. A chronology for the long pollen record from Lake Wangoom, western Victoria (Australia) as derived from uranium/thorium disequilibrium dating. Journal of Quaternary Science 17, 707720. https://doi.org/10.1002/jqs.684CrossRefGoogle Scholar
Hastie, T., Stuetzle, W., 1989. Principal curves. Journal of the American Statistical Association 84, 502516. https://doi.org/10.1080/01621459.1989.10478797CrossRefGoogle Scholar
Haverd, V., Raupach, M.R., Briggs, P.R., Canadell, J.G., Davis, S.J., Law, R.M., Meyer, C.P, et al. , 2013a. The Australian terrestrial carbon budget. Biogeosciences 10, 851869. https://doi.org/10.5194/bg-10-851-2013CrossRefGoogle Scholar
Haverd, V., Raupach, M.R., Briggs, P.R., Canadell, J.G., Isaac, P., Pickett-Heaps, C., Roxburgh, S.H., et al. , 2013b. Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles. Biogeosciences 10, 20112040. https://doi.org/10.5194/bg-10-2011-2013CrossRefGoogle Scholar
Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., et al. , 2020. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 62, 779820. https://doi.org/10.1017/rdc.2020.68CrossRefGoogle Scholar
Hellstrom, J., McCulloch, M., Stone, J., 1998. A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research 50, 167178. https://doi.org/10.1006/qres.1998.1991CrossRefGoogle Scholar
Hellstrom, J., Sniderman, K., Drysdale, R., Couchoud, I., Hartland, A., Pearson, A., Bajo, P., 2020. Speleothem growth intervals reflect New Zealand montane vegetation response to temperature change over the last glacial cycle. Scientific Reports 10, 110. https://doi.org/10.1038/s41598-020-58317-8CrossRefGoogle ScholarPubMed
Hesse, P.P., 1994. The record of continental dust from Australia in Tasman Sea Sediments. Quaternary Science Reviews 13, 257272. https://doi.org/10.1016/0277-3791(94)90029-9CrossRefGoogle Scholar
Hesse, P.P., 2016. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quaternary International 410, 1129. https://doi.org/10.1016/j.quaint.2014.02.020CrossRefGoogle Scholar
Hesse, P.P., Williams, R., Ralph, T.J., Fryirs, K.A., Larkin, Z.T., Westaway, K.E., Farebrother, W., 2018. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quaternary Science Reviews 200, 85105. https://doi.org/10.1016/j.quascirev.2018.09.035CrossRefGoogle Scholar
Higgins, S.I., Scheiter, S., 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209212. https://doi.org/10.1038/nature11238CrossRefGoogle Scholar
Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S., Southon, J., Bayliss, A., Blackwell, P.G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., Wacker, L., 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759778. https://doi.org/10.1017/RDC.2020.59CrossRefGoogle Scholar
Hope, G., 2017. Quaternary Vegetation, in: Hill, R.S. (Ed.), History of the Australian Vegetation: Cretaceous to Recent. University of Adelaide Press, Adelaide, pp. 368389. https://doi.org/https://doi.org/10.20851/australian-vegetation-15CrossRefGoogle Scholar
Hope, G.S., 1978. The late pleistocene and holocene vegetational history of hunter island, North-Western Tasmania. Australian Journal of Botany 26, 493514. https://doi.org/10.1071/BT9780493CrossRefGoogle Scholar
Hopf, F.V.L., Colhoun, E.A., Barton, C.E., 2000. Late-glacial and Holocene record of vegetation and climate from Cynthia Bay, Lake St Clair, Tasmania. Journal of Quaternary Science 15, 725732. https://doi.org/10.1002/1099-1417(200010)15:7<725::AID-JQS563>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: Evaluating the concept of a global “Last Glacial Maximum” (LGM). Earth-Science Reviews 125, 171198. https://doi.org/10.1016/j.earscirev.2013.07.003CrossRefGoogle Scholar
Kemp, J., Rhodes, E.J., 2010. Episodic fluvial activity of inland rivers in southeastern Australia: Palaeochannel systems and terraces of the Lachlan River. Quaternary Science Reviews 29, 732752. https://doi.org/10.1016/j.quascirev.2009.12.001CrossRefGoogle Scholar
Kenyon, C., 1989. A late Pleistocene and Holocene pollen diagram from Boulder Flat, east Gippsland. BSc Honours Thesis, Monash University, Melbourne.Google Scholar
Kershaw, A.P., 1975. Stratigraphy and pollen analysis of Bromfield Swamp, North eastern Queensland, Australia. New Phytologist 75, 173191. https://doi.org/10.1111/j.1469-8137.1975.tb01385.xCrossRefGoogle Scholar
Kershaw, A.P., Bretherton, S.C., van der Kaars, S., 2007a. A complete pollen record of the last 230 ka from Lynch's Crater, north-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 2345. https://doi.org/10.1016/j.palaeo.2007.02.015CrossRefGoogle Scholar
Kershaw, A.P., D'Costa, D.M., McEwen Mason, J.R.C., Wagstaff, B.E., 1991. Palynological evidence for Quaternary vegetation and environments of mainland southeastern Australia. Quaternary Science Reviews 10, 391404. https://doi.org/10.1016/0277-3791(91)90003-DCrossRefGoogle Scholar
Kershaw, A.P., McKenzie, G.M., Porch, N., Roberts, R.G., Brown, J., Heijnis, H., Orr, M., 2007b. A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia. Journal of Quaternary Science 22, 801815. https://doi.org/10.1002/jqsCrossRefGoogle Scholar
Kiernan, K., Fifield, L.K., Chappell, J., 2004. Cosmogenic nuclide ages for Last Glacial Maximum moraine at Schnells Ridge, Southwest Tasmania. Quaternary Research 61, 335338. https://doi.org/10.1016/j.yqres.2004.02.004CrossRefGoogle Scholar
Kiernan, K., Fink, D., McConnell, A., 2017. Cosmogenic 10Be and 26Al exposure ages of glaciations in the Frankland Range, southwest Tasmania reveal a limited MIS-2 ice advance. Quaternary Science Reviews 157, 141151. https://doi.org/10.1016/j.quascirev.2016.12.008CrossRefGoogle Scholar
Killick, R., Eckley, I.A., 2014. changepoint : An R Package for Changepoint Analysis. Journal of Statistical Software 58, 119. https://doi.org/10.18637/jss.v058.i03CrossRefGoogle Scholar
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T.F., Fischer, H., 2017. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth System Science Data 9, 363387. https://doi.org/10.5194/essd-9-363-2017CrossRefGoogle Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 1529615303. https://doi.org/10.1073/pnas.1411762111CrossRefGoogle ScholarPubMed
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 117. https://doi.org/10.1029/2004PA001071Google Scholar
Longmore, M.E., 1997. Quaternary palynological records from perched lake sediments, Fraser Island, Queensland, Australia: Rainforest, forest history and climatic control. Australian Journal of Botany 45, 507526. https://doi.org/10.1071/BT96109CrossRefGoogle Scholar
Lopes dos Santos, R.A., De Deckker, P., Sinninghe Damsté, J.S., Schouten, S., 2013. A late Quaternary sedimentary record of steryl alkyl ethers from offshore southeastern Australia. Organic Geochemistry 54, 140145. https://doi.org/10.1016/j.orggeochem.2012.10.010CrossRefGoogle Scholar
Lopes dos Santos, R.A., Wilkins, D., De Deckker, P., Schouten, S., 2012. Late Quaternary productivity changes from offshore Southeastern Australia: A biomarker approach. Palaeogeography, Palaeoclimatology, Palaeoecology 363–364, 4856. https://doi.org/10.1016/j.palaeo.2012.08.013CrossRefGoogle Scholar
Mackenzie, L., Moss, P., 2017. A late Quaternary record of vegetation and climate change from Hazards Lagoon, eastern Tasmania. Quaternary International 432, 5865. https://doi.org/10.1016/j.quaint.2014.11.051CrossRefGoogle Scholar
Mackintosh, A.N., Barrows, T.T., Colhoun, E.A., Fifield, L.K., 2006. Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3 and MIS 2 glacial advances and climatic variability. Journal of Quaternary Science 21, 363376. https://doi.org/10.1002/jqs.989CrossRefGoogle Scholar
Martin, L., Goff, J., Jacobsen, G., Mooney, S., 2019. The Radiocarbon Ages of Different Organic Components in the Mires of Eastern Australia. Radiocarbon 61, 173184. https://doi.org/10.1017/rdc.2018.118CrossRefGoogle Scholar
McKenzie, G.M., 1997. The late Quaternary vegetation history of the south-central highlands of Victoria, Australia. I. Sites above 900 m. Austral Ecology 22, 1936. https://doi.org/10.1111/j.1442-9993.1997.tb00638.xCrossRefGoogle Scholar
McKenzie, G.M., 2002. The late Quaternary vegetation history of the south-central highlands of Victoria, Australia. II. Sites below 900 m. Austral Ecology 27, 3254. https://doi.org/10.1046/j.1442-9993.2002.01155.xCrossRefGoogle Scholar
Miller, G.H., Fogel, M.L., Magee, J.W., Gagan, M.K., 2016. Disentangling the impacts of climate and human colonization on the flora and fauna of the Australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quaternary Science Reviews 151, 2757. https://doi.org/10.1016/j.quascirev.2016.08.009CrossRefGoogle Scholar
Miller, G.H., Magee, J.W., Jull, A.J.T., 1997. Low-latitude glacial cooling in the Southern Hemisphere from amino-acid racemization in emu eggshells. Nature 385, 241244. https://doi.org/10.1038/385241a0CrossRefGoogle Scholar
Mills, S.C., Grab, S.W., Rea, B.R., Carr, S.J., Farrow, A., 2012. Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quaternary Science Reviews 55, 145159. https://doi.org/10.1016/j.quascirev.2012.08.012CrossRefGoogle Scholar
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657. https://doi.org/10.1016/S0277-3791(00)00145-1CrossRefGoogle Scholar
Moss, P.T., Dunbar, G.B., Thomas, Z., Turney, C., Kershaw, A.P., Jacobsen, G.E., 2017. A 60 000-year record of environmental change for the Wet Tropics of north-eastern Australia based on the ODP 820 marine core. Journal of Quaternary Science 32, 704716. https://doi.org/10.1002/jqs.2977CrossRefGoogle Scholar
Moss, P., Tibby, J., Shapland, F., Fairfax, R., Stewart, P., Barr, C., Petherick, L., et al. , 2016. Patterned fen formation and development from the Great Sandy Region, south-east Queensland, Australia. Marine and Freshwater Research 67, 816827. https://doi.org/10.1071/MF14359CrossRefGoogle Scholar
Moss, P.T., Kershaw, A.P., 2000. The last glacial cycle from the humid tropics of northeastern Australia: Comparison of a terrestrial and a marine record. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 155176. https://doi.org/10.1016/S0031-0182(99)00099-1CrossRefGoogle Scholar
Moss, P.T., Tibby, J., Petherick, L., McGowan, H., Barr, C., 2013. Late Quaternary vegetation history of North Stradbroke Island, Queensland, eastern Australia. Quaternary Science Reviews 74, 257272. https://doi.org/10.1016/j.quascirev.2013.02.019CrossRefGoogle Scholar
Mueller, D., Jacobs, Z., Cohen, T.J., Price, D.M., Reinfelds, I. V., Shulmeister, J., 2018. Revisiting an arid LGM using fluvial archives: a luminescence chronology for palaeochannels of the Murrumbidgee River, south-eastern Australia. Journal of Quaternary Science 33, 777793. https://doi.org/10.1002/jqs.3059CrossRefGoogle Scholar
Nanson, G.C., Price, D.M., Jones, B.G., Maroulis, J.C., Coleman, M., Bowman, H., Cohen, T.J., et al. , 2008. Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia. Geomorphology 101, 109129. https://doi.org/10.1016/j.geomorph.2008.05.032CrossRefGoogle Scholar
Newnham, R.M., Vandergoes, M.J., Hendy, C.H., Lowe, D.J., Preusser, F., 2007. A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand. Quaternary Science Reviews 26, 517535. https://doi.org/10.1016/j.quascirev.2006.05.005CrossRefGoogle Scholar
Page, K.J., Kemp, J., Nanson, G.C., 2009. Late Quaternary evolution of Riverine plain paleochannels, southeastern Australia. Australian Journal of Earth Sciences 56. https://doi.org/10.1080/08120090902870772CrossRefGoogle Scholar
Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337. https://doi.org/10.1016/j.quascirev.2006.04.010CrossRefGoogle Scholar
Petherick, L., Bostock, H., Cohen, T.J., Fitzsimmons, K., Tibby, J., Fletcher, M.S., Moss, P., et al. , 2013. Climatic records over the past 30ka from temperate Australia - a synthesis from the Oz-INTIMATE workgroup. Quaternary Science Reviews 74, 5877. https://doi.org/10.1016/j.quascirev.2012.12.012CrossRefGoogle Scholar
Petherick, L., McGowan, H., Moss, P., 2008. Climate variability during the Last Glacial Maximum in eastern Australia: Evidence of two stadials? Journal of Quaternary Science 23, 787802. https://doi.org/10.1002/jqs.1186CrossRefGoogle Scholar
Petherick, L.M., McGowan, H.A., Kamber, B.S., 2009. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts. Geomorphology 105, 6779. https://doi.org/10.1016/j.geomorph.2007.12.015CrossRefGoogle Scholar
Petherick, L.M., Moss, P.T., McGowan, H.A., 2017. An extended Last Glacial Maximum in subtropical Australia. Quaternary International 432, 112. https://doi.org/10.1016/j.quaint.2015.11.015CrossRefGoogle Scholar
Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., et al. , 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600603. https://doi.org/10.1038/nature13376CrossRefGoogle ScholarPubMed
Prentice, I.C., Cleator, S.F., Huang, Y.H., Harrison, S.P., Roulstone, I., 2017. Reconstructing ice-age palaeoclimates: Quantifying low-CO2effects on plants. Global and Planetary Change 149, 166176. https://doi.org/10.1016/j.gloplacha.2016.12.012CrossRefGoogle Scholar
R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://doi.org/http://www.R-project.org/Google Scholar
Reeves, J.M., Barrows, T.T., Cohen, T.J., Kiem, A.S., Bostock, H.C., Fitzsimmons, K.E., Jansen, J.D., et al. , 2013a. Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: An OZ-INTIMATE compilation. Quaternary Science Reviews 74, 2134. https://doi.org/10.1016/j.quascirev.2013.01.001CrossRefGoogle Scholar
Reeves, J.M., Bostock, H.C., Ayliffe, L.K., Barrows, T.T., De Deckker, P., Devriendt, L.S., Dunbar, G.B., et al. , 2013b. Palaeoenvironmental change in tropical Australasia over the last 30,000 years - a synthesis by the OZ-INTIMATE group. Quaternary Science Reviews 74, 97114. https://doi.org/10.1016/j.quascirev.2012.11.027CrossRefGoogle Scholar
Reinfelds, I., Swanson, E., Cohen, T., Larsen, J., Nolan, A., 2014. Hydrospatial assessment of streamflow yields and effects of climate change: Snowy Mountains, Australia. Journal of Hydrology 512, 206220. https://doi.org/10.1016/j.jhydrol.2014.02.038CrossRefGoogle Scholar
Rother, H., Fink, D., Shulmeister, J., Mifsud, C., Evans, M., Pugh, J., 2014. The early rise and late demise of New Zealand's last glacial maximum. Proceedings of the National Academy of Sciences 111, 1163011635. https://doi.org/10.1073/pnas.1401547111CrossRefGoogle ScholarPubMed
Rowe, C., Wurster, C.M., Zwart, C., Brand, M., Hutley, L.B., Levchenko, V., Bird, M.I., 2020. Vegetation over the last glacial maximum at Girraween Lagoon, monsoonal northern Australia. Quaternary Research 2, 114. https://doi.org/10.1017/qua.2020.50CrossRefGoogle Scholar
Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229232. https://doi.org/10.1038/nature16986CrossRefGoogle ScholarPubMed
Shulmeister, J., Kemp, J., Fitzsimmons, K.E., Gontz, A., 2016. Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia. Climate of the Past 12, 14351444. https://doi.org/10.5194/cp-12-1435-2016CrossRefGoogle Scholar
Simpson, G.L., 2007. Analogue Methods in Palaeoecology: Using the analogue Package. Journal of Statistical Software 22, 131. https://doi.org/10.18637/jss.v022.i02CrossRefGoogle Scholar
Singh, G., Geissler, E., 1985. Late Cainozoic history of vegetation, fire, lake levels and climate at Lake George, New South Wales, Australia. Philosophical Transactions of the Royal Society B 379, 379447.Google Scholar
Singh, G., Opdyke, N.D., Bowler, J.M., 1981. Late Cainozoic stratigraphy, palaeomagnetic chronology and vegetational history from Lake George, N.S.W. Journal of the Geological Society of Australia 28, 435452. https://doi.org/10.1080/00167618108729180CrossRefGoogle Scholar
Sniderman, J.M.K., Hellstrom, J., Woodhead, J.D., Drysdale, R.N., Bajo, P., Archer, M., Hatcher, L., 2019. Vegetation and Climate Change in Southwestern Australia During the Last Glacial Maximum. Geophysical Research Letters 46, 17091720. https://doi.org/10.1029/2018GL080832CrossRefGoogle Scholar
Sniderman, J.M.K., Woodhead, J.D., Hellstrom, J., Jordan, G.J., Drysdale, R.N., Tyler, J.J., Porch, N., 2016. Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences of the United States of America 113, 19992004. https://doi.org/10.1073/pnas.1520188113CrossRefGoogle ScholarPubMed
Stewart, B.A., Mitchell, P.J., 2018. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quaternary Science Reviews 196, 120. https://doi.org/10.1016/j.quascirev.2018.07.014CrossRefGoogle Scholar
Suggate, R.P., Almond, P.C., 2005. The Last Glacial Maximum (LGM) in western South Island, New Zealand: Implications for the global LGM and MIS 2. Quaternary Science Reviews 24, 19231940. https://doi.org/10.1016/j.quascirev.2004.11.007CrossRefGoogle Scholar
Thomas, Z.A., Turney, C.S.M., Hogg, A., Williams, A.N., Fogwill, C.J., 2019. Investigating Subantarctic 14C Ages of Different Peat Components: Site and Sample Selection for Developing Robust Age Models in Dynamic Landscapes. Radiocarbon 61, 10091027. https://doi.org/10.1017/RDC.2019.54CrossRefGoogle Scholar
Tibby, J., Tyler, J.J., Barr, C., 2018. Post little ice age drying of eastern Australia con fl ates understanding of early settlement impacts. Quaternary Science Reviews 202, 4552. https://doi.org/10.1016/j.quascirev.2018.10.033CrossRefGoogle Scholar
Torgersen, T., Luly, J., De Deckker, P., Jones, M.R., Searle, D.E., Chivas, A.R., Ullman, W.J., 1988. Late quaternary environments of the Carpentaria Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 67, 245261. https://doi.org/10.1016/0031-0182(88)90155-1CrossRefGoogle Scholar
Treble, P.C., Baker, A., Ayliffe, L.K., Cohen, T.J., Hellstrom, J.C., Gagan, M.K., Frisia, S., et al. , 2017. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23-15 ka). Climate of the Past 13, 667687. https://doi.org/10.5194/cp-13-667-2017CrossRefGoogle Scholar
Turney, C., Haberle, S., Fink, D., Kershaw, A.P., Barbetti, M., Barrows, T.T., Black, M., et al. , 2006a. Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group. Journal of Quaternary Science 21, 751761. https://doi.org/10.1002/jqs.1073CrossRefGoogle Scholar
Turney, C., Kershaw, A.P., James, S., Branch, N., Cowley, J., Fifield, L.K., Jacobsen, G., Moss, P., 2006b. Geochemical changes recorded in Lynch's Crater, Northeastern Australia, over the past 50 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 233, 187203. https://doi.org/10.1016/j.palaeo.2005.09.009CrossRefGoogle Scholar
Vandergoes, M.J., Newnham, R.M., Denton, G.H., Blaauw, M., Barrell, D.J.A., 2013. The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records. Quaternary Science Reviews 74, 215229. https://doi.org/10.1016/j.quascirev.2013.04.015CrossRefGoogle Scholar
Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S., Trigo, R., López-Moreno, J.I., Azorín-Molina, C., et al. 2013. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America 110, 5257. https://doi.org/10.1073/pnas.1207068110CrossRefGoogle ScholarPubMed
Williams, A.N., Veth, P., Steffen, W., Ulm, S., Turney, C.S.M., Reeves, J.M., Phipps, S.J., Smith, M., 2015. A continental narrative: Human settlement patterns and Australian climate change over the last 35,000 years. Quaternary Science Reviews 123, 91112. https://doi.org/10.1016/j.quascirev.2015.06.018CrossRefGoogle Scholar
Williams, J.W., Webb, T., Shurman, B.N., Bartlein, P.J., 2000. Do Low CO 2 Concentrations Affect Pollen-Based Reconstructions of LGM Climates? A Response to “Physiological Significance of Low Atmospheric CO 2 for Plant–Climate Interactions” by Cowling and Sykes. Quaternary Research 53, 402404. https://doi.org/10.1006/qres.2000.2131CrossRefGoogle Scholar
Williams, M., Cook, E., van der Kaars, S., Barrows, T., Shulmeister, J., Kershaw, P., 2009. Glacial and deglacial climatic patterns in Australia and surrounding regions from 35 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 28, 23982419. https://doi.org/10.1016/j.quascirev.2009.04.020CrossRefGoogle Scholar
Williams, N.J., Harle, K.J., Gale, S.J., Heijnis, H., 2006. The vegetation history of the last glacial–interglacial cycle in eastern New South Wales, Australia. Journal of Quaternary Science 21, 735750. https://doi.org/10.1002/jqs.1069CrossRefGoogle Scholar
Woltering, M., Atahan, P., Grice, K., Heijnis, H., Taffs, K., Dodson, J., 2014. Glacial and Holocene terrestrial temperature variability in subtropical east Australia as inferred from branched GDGT distributions in a sediment core from Lake McKenzie. Quaternary Research 82, 132145. https://doi.org/10.1016/j.yqres.2014.02.005CrossRefGoogle Scholar
Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas, A.L., Webster, J.M., Miyairi, Y., Sawada, C., et al. 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559, 603607. https://doi.org/10.1038/s41586-018-0335-4CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716. https://doi.org/10.1038/35021035CrossRefGoogle ScholarPubMed
Supplementary material: File

Cadd et al. supplementary material

Cadd et al. supplementary material

Download Cadd et al. supplementary material(File)
File 5 MB
6
Cited by