Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-15T16:57:15.679Z Has data issue: false hasContentIssue false

Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka

Published online by Cambridge University Press:  20 January 2017

Carlos Sancho*
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Concha Arenas
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Marta Vázquez-Urbez
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Gonzalo Pardo
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
María Victoria Lozano
Affiliation:
Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Ciudad Escolar s/n, 44003 Teruel, Spain
José Luis Peña-Monné
Affiliation:
Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
John Hellstrom
Affiliation:
School of Earth Sciences, The University of Melbourne, VIC 3010, Melbourne, Australia
José Eugenio Ortiz
Affiliation:
Laboratorio de Estratigrafía Biomolecular, Escuela Técnica Superior de Ingenieros de Minas, Ríos Rosas 21, 28003 Madrid, Spain
María Cinta Osácar
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Luis Auqué
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Trinidad Torres
Affiliation:
Laboratorio de Estratigrafía Biomolecular, Escuela Técnica Superior de Ingenieros de Minas, Ríos Rosas 21, 28003 Madrid, Spain
*
*Corresponding author. Email Address:csancho@unizar.es

Abstract

The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka (~ MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at ~ 353 ka (~ end of MIS 11), 258–180 ka (MIS 7) and 171–154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenas, C., Sancho, C., Vázquez, M., Pardeo, G., Hellstrom, J., Ortiz, J.E., Torres, T., Osácar, C., and Auqué, L. Las tobas cuaternarias del río Añamaza (provincia de Soria, Cordillera Ibérica): aproximación cronológica. Geogaceta 49, (2010). 5154.Google Scholar
Arenas, C., Vázquez-Urbez, M., Auqué, L., Sancho, C., Osácar, M.C., and Pardo, G. Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: a thirteen-year record from a semi-arid environment. Sedimentology 61, (2014). 90132.CrossRefGoogle Scholar
Arenas, C., Vázquez-Urbez, M., Pardo, G., and Sancho, C. Sedimentology and depositional architecture of tufas deposited in stepped fluvial systems of changing slope: lessons from the Quaternary Añamaza valley (Iberian Range, Spain). Sedimentology 61, (2014). 133171.CrossRefGoogle Scholar
Arenas, C., Auqué, L., Osácar, M.C., Sancho, C., Vázquez-Urbez, M., and Pardo, G. Current tufa sedimentation in a high discharge river: a comparison with other synchronous tufa records in the Iberian Range (Spain). Sedimentary Geology 325, (2015). 132157.CrossRefGoogle Scholar
Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., and Sancho-Marcén, C. Fluvial and associated carbonate deposits. Alonso-Zarza, A.M., and Tanner, L.H. Carbonates in continental settings. Facies, environments and processes. Developments in Sedimentology 61, (2010). Elsevier, Amsterdam. 133176.CrossRefGoogle Scholar
Auqué, L., Arenas, C., Osácar, M.C., Pardo, G., Sancho, C., and Vázquez-Urbez, M. Tufa sedimentation in changing hydrological conditions: the River Mesa (Spain). Geologica Acta 11, (2013). 85102.Google Scholar
Auqué, L., Arenas, C., Osácar, C., Pardo, G., Sancho, C., and Vázquez-Urbez, M. Current tufa sedimentation in a changing-slope valley: the River Añamaza (Iberian Range, NE Spain). Sedimentary Geology 303, (2014). 2648.CrossRefGoogle Scholar
Baker, A., Smart, P.L., and Ford, D.C. Northwest European paleoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeography Palaeoclimatology Palaeoecology 100, (1993). 291301.CrossRefGoogle Scholar
Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., and Railsback, L.B. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England. Earth and Planetary Science Letters 240, (2005). 486494.CrossRefGoogle Scholar
Benito, G., Sancho, C., Peña, J.L., Machado, M.J., and Rhodes, E.J. Large-scale karst subsidence and accelerated fluvial aggradation during MIS6 in NE Spain: climatic and paleohydrological implications. Quaternary Science Reviews 29, (2010). 26942704.CrossRefGoogle Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.CrossRefGoogle Scholar
Bradley, R.S. Paleoclimatology. (1999). Academic Press, San Diego. (613 pp.)Google Scholar
Brasier, A.T. Searching for travertines, calcretes and speleothems in deep time: processes, appearances, predictions and the impact of plants. Earth-Science Reviews 104, (2011). 213239.CrossRefGoogle Scholar
Bright, J., and Kaufman, D.S. Amino acid racemization in lacustrine ostracodes, part I: effect of oxidizing pre-treatments on amino acid composition. Quaternary Geochronology 6, (2011). 154173.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., and Canals, M. Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach. Journal of Marine Systems 33, 34 (2002). 253272.CrossRefGoogle Scholar
Calle, M., Sancho, C., Peña, J.L., Cunha, P., Oliva-Urcia, B., and Pueyo, E. La secuencia de terrazas cuaternarias del río Alcanadre (provincia de Huesca): caracterización y consideraciones paleoambientales. Cuadernos de Investigación Geográfica 39, (2013). 159178.CrossRefGoogle Scholar
Calvo, E., Villanueva, J., Grimalt, J.O., Boelaert, A., and Labeyrie, L. New insights into the glacial latitudinal temperature gradients in the North Atlantic. Results from U37 K′ sea surface temperatures and terrigenous inputs. Earth and Planetary Science Letters 188, (2001). 509519.CrossRefGoogle Scholar
Capezzuoli, E., Gandin, A., and Sandrelli, F. Calcareous tufa as indicators of climatic variability: a case study from southern Tuscany (Italy). Geological Society, London, Special Publications 336, (2010). 263281.CrossRefGoogle Scholar
Capezzuoli, E., Gandin, A., and Pedley, H.M. Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology 61, (2014). 121.CrossRefGoogle Scholar
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J.D., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E. Jr. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, (2013). 8291.CrossRefGoogle Scholar
Cremaschi, M., Zerboni, A., Spötl, Ch., and Felletti, F. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya). An early Holocene palaeoclimate archive in the central Shahara. Palaeogeography Palaeoclimatology Palaeoecology 287, (2010). 8194.CrossRefGoogle Scholar
Della Porta, G. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., and Vining, B.A. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Geological Society, London, Special Publications 418, (2015). 1768.CrossRefGoogle Scholar
Domínguez-Villar, D., Vázquez-Navarro, J.A., Cheng, H., and Edwards, R.L. Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean region. Global and Planetary Change 77, (2011). 129141.CrossRefGoogle Scholar
Durán, J.J. Geocronología de los depósitos asociados al karst en España. Durán, J.J., and Martínez, J. El karst en España. Monografías Sociedad Española de Geomorfología 4, (1989). 243256.Google Scholar
Eynaud, F., Abreu, L., Voelker, A., Schönfeld, J., Salgueiro, E., Turon, J.L., Penaud, A., Toucanne, S., Naughton, F., Sánchez-Goñi, M.F., Malaizé, B., and Cacho, I. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry, Geophysics, Geosystems 10, (2009). 121.CrossRefGoogle Scholar
Ford, D., and Pedley, H.M. A review of tufa and travertine deposits of the world. Earth-Science Reviews 41, (1996). 117175.CrossRefGoogle Scholar
Frank, N., Braum, M., Hambach, U., Mangini, A., and Wagner, G. Warm period growth of travertine during the Last Interglaciation in southern Germany. Quaternary Research 54, (2000). 3848.CrossRefGoogle Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., and Wintle, A.G. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26, (1998). 275278.2.3.CO;2>CrossRefGoogle Scholar
García del Cura, M.A., González-Martín, J.A., Ordóñez, S., and Pedley, M. Las lagunas de Ruidera. García-Rayego, J.L., and González-Cárdenas, E. Elementos del medio natural en la provincia de Ciudad Real. Colección Estudios 36, (1997). Ediciones de la Universidad de Castilla-La Mancha, 85129.Google Scholar
García-García, F., Pla-Pueyo, S., Nieto, L.M., and Viseras, C. Sedimentology of geomorphologically controlled Quaternary tufas in a valley in southern Spain. Facies 60, (2014). 5372.CrossRefGoogle Scholar
García-Ruiz, J.M., Martí-Bono, C., Peña-Monné, J.L., Sancho, C., Rhodes, E.J., Valero-Garcés, B., González-Sampériz, P., and Moreno, A. Glacial and fluvial deposits in the Aragón Valley, central-western Pyrenees: chronology of the Pyrenean late Pleistocene glaciers. Geografiska Annaler: Series A, Physical Geography 95, (2013). 1532.CrossRefGoogle Scholar
Goudie, A.S., Viles, H.A., and Pentecost, A. The late-Holocene tufa decline in Europe. The Holocene 3, (1993). 181186.CrossRefGoogle Scholar
Gutiérrez, M., and Peña, J.L. Cordillera Ibérica. Gutiérrez, M. Geomorfología de España. (1994). Editorial Rueda, 251286.Google Scholar
Gutiérrez, F., Gutiérrez, M., Gracia, F.J., McCalpin, J.P., Lucha, P., and Guerrero, J. Plio-Quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Chain (NE Spain). Geomorphology 102, (2008). 2142.CrossRefGoogle Scholar
Hearty, P.J., O´Leary, M.J., Kaufman, D.S., Page, M.C., and Bright, J. Amino acid geochronology of individual foraminifer (Pulleniatina obliquiloculata) tests, north Queenland margin, Australia: a new approach to correlating and dating Quaternary tropical marine sediment cores. Paleoceanography 19, (2004). PA4022 http://dx.doi.org/10.1029/2004PA001059 CrossRefGoogle Scholar
Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 18, (2003). 13461351.CrossRefGoogle Scholar
Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, (2006). 289295.CrossRefGoogle Scholar
Henning, G.J., Grun, R., and Brunnacker, K. Speleothems, travertins and paleoclimates. Quaternary Research 20, (1983). 129.CrossRefGoogle Scholar
Higgins, S.I., and Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, (2012). 209212.CrossRefGoogle Scholar
Indermühle, A., Monnin, E., Stauffer, B., Stocker, T.F., and Wahlen, M. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27, (2000). 735738.CrossRefGoogle Scholar
Kaufman, D.S. Amino acid racemization in ostracodes. Goodfriend, G.A., Collins, M.J., Fogel, M.L., Macko, S.A., and Wehmiller, J.F. Perspectives in Amino Acids and Protein Geochemistry. (2000). Oxford University Press, New York. 145160.Google Scholar
Kaufman, D.S. Temperature sensitivity of aspartic and glutamic acid racemization in the foraminifera Pulleniatina. Quaternary Geochronology 1, (2006). 188207.CrossRefGoogle Scholar
Kaufman, D.S., and Manley, W.F. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Geochronology 17, (1998). 9871000.Google Scholar
Kronfeld, J., Vogel, J.C., Rosenthal, E., and Weinstein-Evron, M. Age and paleoclimatic implications of the Bet Shean travertines. Quaternary Research 30, (1988). 298303.CrossRefGoogle Scholar
Lewis, C., McDonald, E., Sancho, C., Peña, J.L., and Rhodes, E. Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, (2009). 141152.CrossRefGoogle Scholar
Livnat, A., and Kronfeld, J. Paleoclimatic implications of U-series dates for lake sediments and travertines in the Arava Rift Valley, Israel. Quaternary Research 24, (1985). 164172.CrossRefGoogle Scholar
Lozano, M.V., Sancho, C., Arenas, C., Vázquez-Urbez, M., Ortiz, J.E., Torres, T., Pardo, G., Osácar, M.C., and Auqué, L. Análisis preliminar de las tobas cuaternarias del río Ebrón (Castielfabib, Valencia, Cordillera Ibérica). Geogaceta 51, (2012). 5558.Google Scholar
Luzón, M.A., Pérez, A., Borrego, A.G., Mayayo, M.J., and Soria, A.R. Interrelated continental sedimentary environments in the central Iberian Range (Spain): Facies characterization and main palaeoenvironmental changes during the Holocene. Sedimentary Geology 239, (2011). 87103.CrossRefGoogle Scholar
Magnin, F., Guendon, J.L., Vaudour, J., and Martin, Ph. Les travertins: accumulations carbonatées associées aux systèmes karstiques, séquences sédimentaires et paléoenvironnements quaternaires. Bulletin de la Societe Geologique de France 162, (1991). 585594.CrossRefGoogle Scholar
Margari, V., Skinner, L.C., Hodell, D.A., Martrat, B., Toucanne, S., Grimalt, J.O., Gibbard, P.L., Lunkka, J.P., and Tzedakis, P.C. Land–ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology 42, (2014). 183186.CrossRefGoogle Scholar
Martín-Algarra, A., Martín-Marín, M., Andreo, B., Julià, R., and González-Gómez, C. Sedimentary patterns in perched spring travertines near Granada (Spain) as indicators of the paleohydrological and paleoclimatological evolution of a karst massif. Sedimentary Geology 161, (2003). 217228.CrossRefGoogle Scholar
Martínez-Tudela, A., Cuenca, F., Santisteban, C., Grun, R., and Hentzsch, B. Los travertinos del Río Matarraña, Beceite (Teruel) como indicadores paleoclimáticos del Cuaternario. López-Vera, F. Quaternary Climate in Western Mediterranean. (1986). Universidad Autónoma de Madrid, 307324.Google Scholar
Martinson, D.G., Pisias, N., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the Ice Ages: development of a high resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, (1987). 129.CrossRefGoogle Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H., and Hodell, D.A. Abrupt temperature changes in the western Mediterranean over the past 250,000 years. Science 306, (2004). 17621765.CrossRefGoogle ScholarPubMed
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez Goñi, M.F., Grimalt, J.O., and Weltje, G.J. Saharan dust transport and high-latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, (2002). 318328.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Grimalt, J.O., Sánchez Goñi, M.F., Shackleton, N., and Sierro, F.J. Links between marine and atmospheric processes oscillating on a millennial time-scale. A multi-proxy study of the last 50,000 yr from the Alboran Sea (Western Mediterranean Sea). Quaternary Science Reviews 24, (2005). 16231636.CrossRefGoogle Scholar
Moreno, A., Belmonte, A., Bartolomé, M., Sancho, C., Oliva, B., Stoll, H., Edwards, L.R., Cheng, H., and Hellstrom, J. Formación de espeleotemas en el noreste peninsular y su relación con las condiciones climáticas durante los últimos ciclos glaciares. Cuadernos de Investigación Geográfica 39, (2013). 2747.CrossRefGoogle Scholar
Muñoz-García, M.B., Martín-Chivelet, J., Rossi, C., Ford, D.C., and Schwarcz, H.P. Chronology of Termination II and the Last Interglacial Period in North Spain based on stable isotope records of stalagmites from Cueva del Cobre (Palencia). Journal of Iberian Geology 33, (2007). 1730.Google Scholar
Ordoñez, S., González Martín, J.A., García del Cura, M.A., and Pedley, H.M. Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes Natural Park (Central Spain). Geomorphology 69, (2005). 332350.CrossRefGoogle Scholar
Ortiz, J.E., Torres, T., Julià, R., Delgado, A., Llamas, F.J., Soler, V., and Delgado, J. Numerical dating algorithms of amino acid racemization ratios from continental ostracodes. Application to Guadix-Baza basin (southern Spain). Quaternary Science Reviews 23, (2004). 717730.CrossRefGoogle Scholar
Ortiz, J.E., Torres, T., Delgado, A., Reyes, E., and Díaz-Bautista, A. A review of the Tagus river tufa deposits (central Spain): age and palaeoenvironmental record. Quaternary Science Reviews 28, (2009). 947963.CrossRefGoogle Scholar
Ortiz, J.E., Torres, T., and Pérez-González, A. Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls. Quaternary Geochronology 16, (2013). 129143.CrossRefGoogle Scholar
Osácar, M.C., Arenas, C., Vázquez-Urbez, M., Sancho, C., Auqué, L., Pardo, G., Lojen, S., and Cukrov, N. Seasonal and decadal stable isotope evolution recorded by recent tufa deposited on artificial substrates in the Monasterio de Piedra Natural Park (NE Spain). Geogaceta 54, (2013). 135138.Google Scholar
Pazdur, A., Pazdur, M.F., Starkel, L., and Szulc, J. Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quaternary Research 30, (1988). 177189.CrossRefGoogle Scholar
Pedley, H.M. Classification and environmental models of cool freshwater tufas. Sedimentary Geology 68, (1990). 143154.CrossRefGoogle Scholar
Pedley, H.M. Sedimentology of the late Quaternary barrage tufas in the Wye and Lathkill valleys, north Derbyshire. Proceedings of the Yorkshire Geological Society 49, (1993). 197206.CrossRefGoogle Scholar
Pedley, M. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56, (2009). 221246.CrossRefGoogle Scholar
Pedley, M., Andrews, J., Ordoñez, S., García del Cura, M.A., González Martín, J.A., and Taylor, D. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography Palaeoclimatology Palaeoecology 121, (1996). 239257.CrossRefGoogle Scholar
Peña, J.L., Gutiérrez, M., Ibáñez, M.J., Lozano, M.V., Rodríguez, J., Sánchez, M., Simón, J.L., Soriano, A., and Yetano, L.M. Geomorfología de la Provincia de Teruel. (1984). Instituto de Estudios Turolenses, (149 pp.)Google Scholar
Pentecost, A. The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews 14, (1995). 10051028.CrossRefGoogle Scholar
Pérez-Sanz, A., González-Sampériz, P., Moreno, A., Valero-Garcés, B., Gil-Romera, G., Rieradevall, M., Tarrats, P., Lasheras-Álvarez, L., Morellón, M., Belmonte, A., Sancho, C., Sevilla-Callejo, M., and Navas, A. Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quaternary Science Reviews 73, (2013). 149169.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 5, (2009). 11111150.CrossRefGoogle Scholar
Sancho, C., Muñoz, A., Rhodes, E., McDonald, E., Peña, J.L., Benito, G., and Longares, L.A. Morfoestratigrafía y cronología de registros fluviales del Pleistoceno superior en Bardenas Reales de Navarra: implicaciones paleoambientales. Geogaceta 45, (2008). 4750.Google Scholar
Sancho, C., Arenas, C., Pardo, G., Vázquez, M., Hellstrom, J., Ortiz, J.E., Torres, T., Rhodes, E., Osácar, C., and Auqué, L. Ensayo cronológico de las tobas cuaternarias del río Piedra (Cordillera Ibérica). Geogaceta 48, (2010). 3134.Google Scholar
Scotti, V.N., Molina, P., Faccenna, C., Soligo, M., and Casas-Sainz, A. The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): quantitative geomorphological analysis and geochronology. Geomorphology 206, (2014). 3757.CrossRefGoogle Scholar
Smith, J.R., Giegengack, R., and Schwarcz, H.P. Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeography Palaeoclimatology Palaeoecology 206, (2004). 157175.CrossRefGoogle Scholar
Stoll, H.M., Moreno, A., Mendez-Vicente, A., Gonzalez-Lemos, S., Jimenez-Sanchez, M., Dominguez-Cuesta, M.J., Edwards, R.L., Cheng, H., and Wang, X. Paleoclimate and growth rates of speleothems in the northwestern Iberian Peninsula over the last two glacial cycles. Quaternary Research 80, (2013). 284290.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 3, (1993). 215230.CrossRefGoogle Scholar
Vázquez-Urbez, M., Arenas, C., Sancho, C., Osácar, M.C., Auqué, L., and Pardo, G. Factors controlling present-day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): depositional environmental settings, sedimentation rates and hydrochemistry. International Journal of Earth Sciences 99, (2010). 10271049.CrossRefGoogle Scholar
Vázquez-Urbez, M., Pardo, G., Arenas, C., and Sancho, C. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain). Geomorphology 125, (2011). 110.CrossRefGoogle Scholar
Vázquez-Urbez, M., Arenas, C., Sancho, C., Auqué, L., Osácar, C., and Pardo, G. Quaternary and present-day tufa Systems of the Rivers Piedra and Añamaza (Iberian Range, Spain). Arenas, C., Pomar, L., and Colombo, F. Field trips 28th IAS Meeting, Zaragoza. Geo-Guías 8, (2011). International Association of Sedimentologists-Sociedad Geológica de España, 241274.Google Scholar
Vázquez-Urbez, M., Arenas, C., and Pardo, G. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys. Sedimentology 59, (2012). 502526.CrossRefGoogle Scholar
Viles, H.A., and Goudie, A.S. Tufas, travertines and allied carbonate deposits. Progress in Physical Geography 14, (1990). 1941.CrossRefGoogle Scholar
Viles, H.A., Taylor, M.P., Nicoll, K., and Neumann, S. Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia. Sedimentary Geology 195, (2007). 3953.CrossRefGoogle Scholar
Wainer, K., Genty, D., Blamart, D., Bar-Matthews, M., Quinif, Y., and Plagnes, V. Millennial climatic instability during penuntimate glacial periods recorded in a south-western France speleothem. Palaeogeography Palaeoclimatology Palaeoecology 376, (2013). 122131.CrossRefGoogle Scholar
Wilson, G.P., Frogley, M.R., Roucoux, K.H., Jones, T.D., Leng, M.J., Lawson, I.T., and Hughes, P.D. Limnetic and terrestrial responses to climate change during the onset of the penultimate glacial stage in NW Greece. Global and Planetary Change 107, (2013). 213225.CrossRefGoogle Scholar