Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-q6bj7 Total loading time: 0.33 Render date: 2022-12-04T03:25:37.100Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Climate of East Africa 6000 14C Yr B.P. as Inferred from Pollen Data

Published online by Cambridge University Press:  20 January 2017

Odile Peyron
Affiliation:
CEREGE, Europôle de I'Arbois, B.P. 80, 13545 Aix-en-Provence cedex 04, France, and Institut Méditerranéen d'Ecologie et de Paléoécologie, CNRS, Case 451, 13397 Marseille cedex 20, France
Dominique Jolly
Affiliation:
Dpt Paléoenvironnements et Palynologie, case 61, ISEM, Université Montpellier 2, 34095, Montpellier cedex 5, France
Raymonde Bonnefille
Affiliation:
CEREGE, Europôle de I'Arbois, B.P. 80, 13545, Aix-en-Provence cedex 04, France
Annie Vincens
Affiliation:
CEREGE, Europôle de I'Arbois, B.P. 80, 13545, Aix-en-Provence cedex 04, France
Joël Guiot
Affiliation:
Institut Méditerranéen d'Ecologie et de Paléoécologie, CNRS, Case 451, 13397, Marseille cedex 20, France

Abstract

This paper presents a spatial reconstruction of climate in East Africa at 6000 14C yr B.P. Two different approaches using pollen data have been used, the standard “best modern analogues” method and the new “plant functional type” method, based on groups of pollen taxa. Both methods have been applied to 32 fossil pollen spectra dated at 6000 14C yr B.P. For each site, we have estimated two climatic parameters (annual precipitation and mean annual temperature), three bioclimatic parameters (ratio of actual to potential evapotranspiration, and the mean temperature of the coldest and warmest months). Results show that the temperature lapse rate was less steep at 6000 14C yr B.P. than it is today. The climate was wetter north of 3°S (precipitation anomalies >+50 mm/yr) and slightly drier farther south (precipitation anomalies ≤+50 mm/yr). The ratio of actual to potential evapotranspiration also indicates conditions similar to or wetter than today north of 3°S (anomalies >10%). The climate was warmer than today by 2°C north of the equator and was cooler southward (≤−1°C). Although both methods indicate similar climatic patterns, the plant functional type method provides more consistent results.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, A. (1988). Milankovitch theory and climate. Review of Geophysics,26, 624657., CrossRefGoogle Scholar
Bonnefille, R., Riollet, G. (1988). The Kashiru pollen sequence (Burundi). Palaeoclimatic implications for the last 40,000 yr. B.P. in tropical Africa. Quaternary Research,30, 1935., CrossRefGoogle Scholar
Bonnefille, R., Roeland, J.C., Guiot, J. (1990). Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature,346, 346349., CrossRefGoogle Scholar
Bonnefille, R., Riollet, G., Buchet, G. (1991). Nouvelle séquence pollinique d'une tourbière de la crête Zaı̈re-Nil (Burundi). Review of Palaeobotany and Palynology,67, 315330., CrossRefGoogle Scholar
Bonnefille, R., Chalié, F., Guiot, J., Vincens, A. (1992). Quantitative estimates of full glacial temperatures in equatorial Africa from palynological data. Climate Dynamics,6, 251257., CrossRefGoogle Scholar
Bonnefille, R., Riollet, G., Buchet, G., Icole, M., Lafont, R., Arnold, M., Jolly, D. (1995). Glacial/interglacial record from intertropical Africa, high resolution pollen and carbon data at Rusaka, Burundi. Quaternary Science Reviews,14, 917936., CrossRefGoogle Scholar
Bonnefille, R. F., Chalié in press, . Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr B.P, Global and Planetary Change.Google Scholar
Chalié, F. (1992). Paléoclimatologie quantitative en Afrique orientale depuis 40000 ans, pollen et statistiques. Google Scholar
Chalié, F. (1995). Paléoclimats du bassin Tanganyika Sud au cours des 25 derniers mille ans: Reconstitution quantitative par le traitement de données polliniques. Comptes-Rendus de l'Académie des Sciences,320, 206208., Google Scholar
Science,241, (1988). 10431052., CrossRefGoogle ScholarPubMed
Coetzee, J.A. (1967). Pollen analytical studies in East and southern Africa. Palaeoecology of Africa,3, 1146., Google Scholar
Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., Bush, M., von Grafenstein, U., Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.E., Ono, Y., Pinot, S., Stute, M., Yu, G. (1999). Tropical climate at the last glacial maximum: A new synthesis of terrestrial paleoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics 136., Google Scholar
Griffiths, J.F.. Climates of Africa. Landsberg, H.E. (1972). World Survey of Climatology. Elsevier, Amsterdam/London/New York.Google Scholar
Guiot, J. (1990). Methodology of palaeoclimatic reconstruction from pollen in France. Palaeogeography, Palaeoclimatology, Palaeoecology,80, 4969., CrossRefGoogle Scholar
Guiot, J., Cheddadi, R., Prentice, I.C., Jolly, D. (1996). A method of biome and land surface mapping from pollen data: Application to Europe 6000 years ago. Palaeoclimates,1, 311324., Google Scholar
Hamilton, A.C. (1982). Environmental History of East Africa: A Study of the Quaternary. Academic Press, New York.Google Scholar
Harrison, S.P., Jolly, D., Laarif, F., de Noblet, N., Dong, B., Herteroch, K., Hewitt, C., Joussaume, S., Kutzbach, J.E., Mitchell, J., Valdes, P. (1998). Intercomparison of simulated global vegetation forcing distribution in response to insolation to 6 kyr B.P. orbital forcing. Journal of Climate,11, 27212742., 2.0.CO;2>CrossRefGoogle Scholar
Hedberg, O. (1951). Vegetation belts of the East African mountains. Svensk Botanisk Tidskrift,45, 140202., Google Scholar
Jolly, D., Bonnefille, R. (1991). Diagramme pollinique d'un sondage Holocène de la Kuruyange (Burundi, Afrique Centrale). Palaeoecology of Africa,22, 265274., Google Scholar
Jolly, D., Bonnefille, R. (1992). Histoire et dynamique du marécage tropical de Ndurumu (Burundi), données polliniques. Review of Palaeobotany and Palynology,75, 133151., CrossRefGoogle Scholar
Jolly, D. (1993). Evolution et dynamique des écosystèmes du Burundi. Pollen et statistique. Google Scholar
Jolly, D., Bonnefille, R., Roux, M. (1994). Numerical interpretation of a high resolution Holocene pollen record from Burundi. Palaeogeography, Palaeoclimatology, Palaeoecology,109, 357370., CrossRefGoogle Scholar
Jolly, D., Prentice, I.C., Bonnefille, R., Ballouche, A., Bengo, M., Brénac, P., Buchet, G., Burney, D., Cazet, J.P., Cheddadi, R., Edorh, T., Elenga, H., Elmoutaki, S., Guiot, J., Laarif, F., Lamb, H., Lézine, A.M., Maley, J., Mbenza, M., Peyron, O., Reille, M., Reynaud-Farrera, I., Riollet, G., Ritchie, J.C., Roche, E., Scott, L., Ssemmanda, I., Straka, H., Umer, M., Van Campo, E., Vilimumbalo, S., Vincens, A., Waller, M. (1998). Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6 ka. Journal of Biogeography,25, 10071028., CrossRefGoogle Scholar
Jolly, D., Harrison, S.P., Damnati, B., Bonnefille, R. (1998). Simulated climate and biomes of Africa during the late Quaternary: Comparison with pollen and lake-status data. Quaternary Science Reviews,17, 629657., CrossRefGoogle Scholar
Joussaume, S., and Taylor, K. E. (1995). Status of the Paleoclimate Modelling Intercomparison Project (PMIP). WCRP Report 92,pp. 425430.,Google Scholar
Joussaume, S., Taylor, K. E., Braconnot, P., J. F. B., Mitchell, Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., A., Abe-Ouchi, Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAveney, B., McFarlane, N., N., de Noblet, Peterschmitt, J. Y., Pollard, D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U. (1999). Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)26. 859862.Google Scholar
Kendall, R.L. (1969). An ecological history of the Lake Victoria basin. Ecological Monographs,39, 121176., CrossRefGoogle Scholar
Kutzbach, J.E., Webb, T. III. Conceptual basis for understanding late-Quaternary climates. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (1993). Global Climates since the Last Glacial Maximum. Univ. of Minnesota Press, Minneapolis/London.511., Google Scholar
Kutzbach, J.E., Liu, Z. (1997). Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science,278, 440443., CrossRefGoogle Scholar
Kutzbach, J.E., Gallimore, R., Harrison, S.P., Behling, P., Laarif, F., Selin, R. (1998). Climate simulations for the past 21,000 years. Quaternary Science Reviews,17, 473506., CrossRefGoogle Scholar
Lézine, A.M., Bonnefille, R. (1982). Diagramme pollinique Holocène d'un sondage du lac Abiyata (Ethiopie, 7°42′Nord). Pollen et Spores,24, 463480., Google Scholar
Lind, E.M., Morrison, M.E.S. (1974). East African Vegetation. Longman, London.Google Scholar
Livingstone, D.A. (1967). Postglacial vegetation of the Ruwenzori Mountains in equatorial Africa. Ecological Monographs,37, 2552., CrossRefGoogle Scholar
Maitima, J.M. (1991). Vegetation response to climatic change in central rift valley, Kenya. Quaternary Research,35, 234245., CrossRefGoogle Scholar
Mbenza, M., Roche, E. (1980). Exemple d'évolution paléoclimatique au Pleistocène terminal et à l'Holocène au Shaba (Zaı̈re). Mémoires du Muséum d'Histoire Naturelle, Paris, Serie B, Botanique,27, 137148., Google Scholar
Nieuwolt, S. (1977). Tropical Climatology: An Introduction to the Climates of Low Latitudes. Wiley, London.Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P.E., Reille, M., Beaulieu, J.L., de Bottema, S., Andrieu, V. (1998). Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research,49, 183196., CrossRefGoogle Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon, A.M. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography,19, 117134., CrossRefGoogle Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R. (1996). Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6000 yr B.P. Climate Dynamics,12, 185194., CrossRefGoogle Scholar
Roeland, J.C., Guiot, J., Bonnefille, R. (1988). Pollen et reconstruction quantitative du climat. Validation des données d'Afrique orientale. Comptes-Rendus de l'Académie des Sciences, Paris, Série 2,307, 17351740., Google Scholar
Smith, T.M., Shugart, H.H., Woodward, F.I. (1997). Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge Univ. Press, Cambridge.Google Scholar
Ssemmanda, I., Vincens, A. (1993). Végétation et climat dans le bassin du lac Albert (Ouganda/Zaire) depuis 13000 ans B.P.: Apport de la palynologie. Comptes-Rendus de l'Académie des Sciences,316, 561567., Google Scholar
Street-Perrott, F.A., Perrott, R.A.. Holocene vegetation, lake-levels, and climate of Africa. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (1993). Global Climates since the Last Glacial Maximum. Univ. of Minnesota Press, Minneapolis/London.318356., Google Scholar
Taylor, D.M. (1993). Environmental change in montane southwest Uganda: A pollen record for the Holocene from Ahakagyezi Swamp. Palaeogeography, Palaeoclimatology, Palaeoecology,80, 283300., CrossRefGoogle Scholar
Texier, D., Noblet, N., de Harrison, S.P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I.C., Tarasov, P. (1997). Quantifying the role of biosphere–atmosphere feedbacks in climate change: Coupled model simulations for 6000 yr B.P. and comparison with paleodata for northern Eurasia and northern Africa. Climate Dynamics,13, 865882., CrossRefGoogle Scholar
Vincens, A. (1986). Diagramme pollinique d'un sondage Pleistocène supérieur Holocène du lac Bogoria (Kenya). Review of Palaeobotany and Palynology,47, 169192., CrossRefGoogle Scholar
Vincens, A. (1989). Paléoenvironnements du bassin Nord-Tanganyika (Zaire, Burundi, Tanzanie) au cours des 31 derniers mille ans: Apport de la palynologie. Review of Palaeobotany and Palynology,61, 6988., CrossRefGoogle Scholar
Vincens, A. (1993). Nouvelle séquence pollinique du lac Tanganyika: 30000 ans d'histoire botanique et climatique du Bassin Nord. Review of Palaeobotany and Palynology,78, 381394., CrossRefGoogle Scholar
Vincens, A., Chalié, F., Bonnefille, R., Guiot, J., Tiercelin, J.J. (1993). Pollen derived rainfall and temperature estimates from lake Tanganyika and their implication for late Pleistocene water levels. Quaternary Research,40, 343350., CrossRefGoogle Scholar
White, F. (1983). The Vegetation of Africa. A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa,UNESCO, Paris.Google Scholar
Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge Univ. Press, Cambridge.Google Scholar
Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrot, F.A., Bartlein, P.J. (1993). Global Climates since the Last Glacial Maximum. Univ. of Minnesota Press, Minneapolis/London.Google Scholar
67
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Climate of East Africa 6000 14C Yr B.P. as Inferred from Pollen Data
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Climate of East Africa 6000 14C Yr B.P. as Inferred from Pollen Data
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Climate of East Africa 6000 14C Yr B.P. as Inferred from Pollen Data
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *