Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T15:56:51.972Z Has data issue: false hasContentIssue false

Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes

Published online by Cambridge University Press:  20 January 2017

Natalia Williams*
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina Centro Científico Tecnológico, CONICET, Patagonia Norte, Argentina
Maria Rieradevall
Affiliation:
Grup de Recerca F.E.M. (Freshwater Ecology and Management), Department d’Ecologia, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain IRBio (Institut de Recerca de Biodiversitat), Universitat de Barcelona, Spain
Diego Añón Suárez
Affiliation:
Laboratorio de Fotobiología (CRUB-INIBIOMA), Quintral 1250, 8400, Bariloche, Argentina
Andrea Rizzo
Affiliation:
Centro Científico Tecnológico, CONICET, Patagonia Norte, Argentina Grup de Recerca F.E.M. (Freshwater Ecology and Management), Department d’Ecologia, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
Romina Daga
Affiliation:
Centro Científico Tecnológico, CONICET, Patagonia Norte, Argentina Grup de Recerca F.E.M. (Freshwater Ecology and Management), Department d’Ecologia, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
Sergio Ribeiro Guevara
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
María Angélica Arribére
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina Instituto Balseiro, Universidad Nacional de Cuyo, Argentina
*
*Corresponding author. Centro Atomico Bariloche, Av. Bustillo km 9.5, 8400, Bariloche, Río Negro, Argentina. E-mail address:natywilliams86@gmail.com(N. Williams)

Abstract

Chironomid communities were studied in a sediment core collected from Lake Moreno Oeste, located in Nahuel Huapi National Park. A major change in midge assemblages occurred at ∼AD 1760, which was characterized by a decrease of “cold taxa” including Polypedilum sp.2 and Dicrotendipes, and an increase of “warm taxa” including Apsectrotanypus and Polypedilum sp.1. These taxa are likely related to climatic conditions concurrent with the end of a cold period at ∼AD 1500-1700 and the beginning of a drying climate at ∼AD 1740-1900 in northern Patagonia. Coarse tephra layers had low midge diversity; however they did not disrupt the climatic trend as the community recovered rapidly after the event. Since AD 1910, after the increase in suburban housing, fish introduction, and the construction of a road, there was an increase in the relative abundances of taxa typically associated with the littoral zone, such as Parapsectrocladius, Riethia, Apsectrotanypus, and some Tanytarsini morphotypes. The main change in the chironomid community appears to be associated with long-term climate change. At the beginning of the 20th century, other site-specific environmental factors (catchment change and fish introduction) altered the chironomid assemblages, making it more difficult to understand the relative importance of each driver of assemblage change.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Deceased 15.X.2015

References

Añón Suarez, D., 1991. Distribución del bentos del lago Escondido (Río Negro, Argentina) con éspecial enfasis en los quironómidos (Diptera: Chironomidae). Studies on Neotropical Fauna and Environment 26, 149157 Google Scholar
Araneda, A., Cruces, F., Torres, L., Bertrand, S., Fagel, N., Treutler, H.C., Chirinos, L., Barra, R., Urrutia, R., 2007. Changes of sub-fossil chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38°S), Chile. Revista Chilena de Historia Natural 80, 141156 Google Scholar
Arcagni, M., Campbell, L.M., Arribere, M.A., Kyser, K., Klassene, K., Casauxf, R., Miserendino, M.L., Ribeiro Guevara, S., 2013. Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43, 131142 Google Scholar
Ashe, P., Murray, D.A., Reiss, F., 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23, 2760.Google Scholar
Begon, M., Harper, J.L., Townsend, C.R., 1999. Ecología: individuos, poblaciones y comunidades, 3° edicion. Ediciones Omega, p. 1148.Google Scholar
Bertrand, S., Boes, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175 Google Scholar
Birks, H.J.B., 1998. Numerical tools in palaeolimnology — progress, potentialities, and problems. Journal of Paleolimnology 20, 307332.Google Scholar
Brodersen, K.P., Anderson, N.J., 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47, 11371157.Google Scholar
Buria, L., Walde, S.J., Battini, M., Macchi, P.J., Alonso, M., Ruzzante, D.E., Cussac, V.E., 2007. Movement of a South American perch Percichthys trucha in a mountain Patagonian lake during spawning and prespawning periods. Journal of Fish Biology 70, 215230.Google Scholar
Clarke, K.R., Warwick, R.M., 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216, 265278.Google Scholar
Clarke, K.R., Gorley, R.N., 2005. PRIMER v.6: User Manual/Tutorial. PRIMER-E Ltda, Playmouth, UK.Google Scholar
Coffman, W.B., Ferrington, L.C., 1996. Chironomidae. In: Merrit, W., Cummings, K.W. (Eds.), An Introduction to the Aquatic Insects of North America, second ed. Kendall/Hunt Dubuque, Iowa, pp. 551643.Google Scholar
Corley, J., Massaferro, J., 1998. Long term turnover of a fossil community of Chironomids (Diptera) from Lake Mascardi (Patagonia, Argentina). Journal of Entomological Society of America 71, 403409.Google Scholar
Cranston, P.S., 2000. Electronic Guide to the Chironomidae of Australian. with updates.Google Scholar
Daga, R., Ribeiro Guevara, S., Sanchez, M.L., Arribere, M., 2008. Source identification of volcanic ashes by geochemical analysis of well-preserved lacustrine tephras in Nahuel Huapi National Park. Applied Radiation and Isotopes 66, 13251336 CrossRefGoogle ScholarPubMed
Daga, R., Ribeiro Guevara, S., Sanchez, M.L., Arribere, M., 2010. Tephrochronology of recent events in the Andean range (northern Patagonia) spatial distribution and Provenance of Lacustrine ash layers in the Nahuel Huapi National Park. Journal of Quaternary Science 25, 11131123 Google Scholar
Daga, R., Bertrand, S., Bedert, R., Ribeiro Guevara, S., Ghazoui, Z., 2013. Lacustrine Records of the June 2011 Eruption of the Puyehue-Cord on Caulle Volcanic Complex, Central Chile (40°30‘S, 72°10‘W), vol. 15. Geophysical Research Abstracts; EGU2013-1045, EGU General Assembly 2013. Viena, Austria.Google Scholar
Díaz, M., Pedrozo, A., Reynolds, C., Temporetti, P., 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37, 1727.Google Scholar
Donato, M., Massaferro, J., Brooks, S., 2008. Chironomid (Chironomidae: Diptera) checklist from Nahuel Huapi National Park, Nahuel Huapi National Park, Patagonia, Argentina. Revista de la Sociedad Entomologica Argentina 67, 163170 Google Scholar
Eastwood, W.J., Tibby, J., Roberts, N., Birks, H.J.B., Lamb, H.F., 2002. The environmental impact of the minoan eruption of Santorini (Thera): statistical analysis of palaeocological data from Golhisar, southwest Turkey. Holocene 12, 431444.Google Scholar
Epler, J.H., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. EPA Region 4 and Human Health and Ecological Division. North Carolina Department of Environment and Natural Resources. Division of Water Quality, p. 516.Google Scholar
Francis, D.R., 2004. Distribution of midge remains (Diptera: Chironomidae) in surficial Lake sediments in New England. Northeastern Naturalist 11, 459478.Google Scholar
Frossard, V., Millet, L., Verneaux, V., Jenny, J.P., Arnaud, F., Magny, M., Perga, M.E., 2013. Depth-specific responses of a chironomid assemblage to contrasting anthropogenic pressures: a palaeolimnological perspective from the last 150 years. Freshwater Biology 59, 2640.Google Scholar
Grimm, E., 1987. A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335 Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility ad comparability of results. Journal of Paleolimnology 25, 101110 Google Scholar
Langdon, P.G., Ruiz, Z., Wynne, S., Sayer, C.D., Davidson, T.A., 2010. Ecological influences on larval chironomid communities in shallow lakes, larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55, 531545.Google Scholar
Lara, A., Villalba, R., 1993. A 3620-year temperature record from Fitzroya cupres-soides tree rings in Southern South America. Science 260, 11041106 Google Scholar
Larocque, I., Grosjean, M., Heiri, O., Bigler, C., Blass, A., 2009. Comparison between chironomid-inferred July temperatures and meteorological data AD 1850-2001 from varved Lake Silvaplana, Switzerland. Journal of Paleolimnology 41, 329342.Google Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., Marchetto, A., 1997. Modern diatom, clado-cera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18, 395420.Google Scholar
Lowe, D., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153 Google Scholar
Macchi, P.J., Pascual, M.A., Vigliano, P.H., 2007. Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica 37, 7687.Google Scholar
Massaferro, J., Ribeiro Guevara, S., Rizzo, A., Arribere, M., 2005. Short-term environmental changes in Lake Morenito (41°S, 71°W, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquatic Conservation: Marine and Freshwater Ecosystems 14, 123134 Google Scholar
Massaferro, J., Ortega, C., Fuentes, R., Araneda, A., 2013. Guia para la identificacion de Tanytarsini subfosiles (Diptera, Tanytarsini subfosiles (Diptera: Chironomidae: Chironominae) de la Patagonia. Ameghiniana 50, 319334.Google Scholar
Massaferro, J., 2009. Paleoecología: el uso de los quironomidos fosiles (Diptera: Chironomidae) en reconstrucciones paleoambientales durante el Cuaternario en la Patagonia. Revista de la sociedad entomologica Argentina 68, 209217.Google Scholar
Massaferro, J., Corley, J., 1998. Environmental disturbance and Chironomid palaeodiversity: 15 kyr BP of history at lake Mascardi, Patagonia, Argentina. Aquatic Conservation 8, 315323.Google Scholar
Massaferro, J., Brooks, S.J., 2002. The response of Chironomids to late Quaternary environmental change in the Taitao, Penninsula, southern Chile. Journal of Quaternary Science 17, 101111.Google Scholar
Massaferro, J., Larocque, I., 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24, 201210.Google Scholar
Millet, L., Massa, C., Bichet, V., Frossard, V., Belle, S., Gauthier, E., 2014. Anthropogenic versus climatic control in a high-resolution 1500-year chironomid stratigraphy from a southwestern Greenland lake. Quaternary Research 81, 193202.Google Scholar
Miserendino, M.L., Archangelsky, M., Brand, C., Epele, L.B., 2012. Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaiten Volcano (May 2008). Science of the Total Environment 424, 202212.Google Scholar
Modenutti, B., Perez, G.L., 2001. Planktonic ciliates from an oligotrophic South Andean lake, Morenito lake (Patagonia, Argentina). Brazilian Journal of Biology 61, 389395.Google Scholar
Modenutti, B.E., Balseiro, E.G., Queimalinos, C.P., 2000. Ciliate community structure in two South Andean lakes: the effect of lake water on Ophrydium naumanni distribution. Aquatic Microbial Ecology 21, 299307.Google Scholar
Neukom, R., Luterbacher, J., Villalba, R., Küttel, M., Frank, D., Jones, P.D., Grosjean, M., Wanner, H., Aravena, J.C., Black, D.E., Christie, D.A., D’Arrigo, R., Lara, A., Morales, M., Soliz-Gamboa, C., Srur, A., Urrutia, R., von Gunten, L., 2011. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Climate Dynamics 37, 3551.Google Scholar
Queimalinos, C.P., Modenutti, B.E., Balseiro, E., 1999. Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake. Journal of Plankton Research 21, 167178.Google Scholar
Rees, A.B.H., Cwynar, L.C., Cranston, P.S., 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40, 11591178.Google Scholar
Ribeiro Guevara, S., Arribere, M.A., 2002. 137 Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. Journal of Radioanalytical and Nuclear Chemistry 252, 3745.Google Scholar
Ribeiro Guevara, S., Rizzo, A., Sanchez, R., Arribere, M., 2005. Heavy metal inputs in Northern Patagonia lakes from short sediment core analysis. Journal of Radio-analytical and Nuclear Chemistry 265, 481493.Google Scholar
Rieradevall, M., Brooks, S.J., 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25, 8199.Google Scholar
Romero, J.E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckzieguel, F., Viramonte, J., Díaz-Alvarado, J., Polacci, M., Burton, M., Perugini, D., 2016. Eruption dynamics of the 22-23 April 2015 Calbuco volcano (southern Chile): analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research 317, 1529. http://dx.doi.org/10.1016/j.jvolgeores.2016.02.027.Google Scholar
Stern, C., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista geologica de Chile 31, 161206 Google Scholar
Takamura, N., Ito, T., Ueno, R., Ohtaka, A., Wakana, I., Nakagawa, M., Ueno, Y., Nakajima, H., 2009. Environmental gradients determining the distribution of benthic macroinvertebrates in Lake Takkobu, Kushiro wetland, northern Japan. Ecological Research 24, 371381.Google Scholar
Tarkowska-Kukuryk, M., 2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake, macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15, 141153.Google Scholar
ter Braak, C.J.F., 1991. Program CANOCO Version 3.12. Agricultural Mathematics Group, Wageningen, The Netherlands, p. 35.Google Scholar
Vermaire, J.C., Greffard, M.L., Saulnier-Talbot, E., Gregory-Eaves, I., 2013. Changes in submerged macrophyte abundance altered diatom and chironomid assemblages in a shallow lake. Journal of Paleolimnology 50, 447456.Google Scholar
Verschuren, D., Eggermont, H., 2006. Quaternary paleoecology of aquatic Diptera in tropical and southern hemisphere regions, with special reference to the Chironomidae. Quaternary Science Reviews 25, 19261947.Google Scholar
Villalba, R., 1990. Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Research 34, 346360.Google Scholar
Villalba, R., 1994. Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in southern South America. Climatic Change 26, 183197.CrossRefGoogle Scholar
Villalba, R., D’Arrigo, R.D., Cook, E.R., Jacoby, G.C., Wiles, G., 2001. Decadal-scale climatic variability along the extratropical western coast of the Americas: evidence from tree-ring records. In: V., Markgraf (Ed.), Interhemispheric Climate Linkages. Academic Press, San Diego, pp. 155172.Google Scholar
Walker, I.R., 2001. Midges: Chironomidae and related Diptera. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lakes Sediments, Zoological Indicators, vol. 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 4366.Google Scholar
Chironomidae of the Holarctic region. Keys and diagnoses. Part I, larvae. In: Wiederholm, T. (Ed.), Entomologica Scandinavica (Suppl. 19), 1457.Google Scholar
Zar, J.H., 2010. Biostatistical Analysis. Prentice-Hall International, N.J., p. 620.Google Scholar