Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.702 Render date: 2022-05-23T20:39:06.987Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Aleutian Low variability for the last 7500 years and its relation to the Westerly Jet

Published online by Cambridge University Press:  02 February 2021

Kana Nagashima*
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka237-0061, Japan
Jason Addison
Affiliation:
U.S. Geological Survey, 345 Middlefield Road, Mail Stop 910, Menlo Park, California94025, USA
Tomohisa Irino
Affiliation:
Faculty of Environmental Earth Science, Hokkaido University, N10W5 Sapporo, Hokkaido060-0810, Japan
Takayuki Omori
Affiliation:
The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
Kei Yoshimura
Affiliation:
Institute of Industrial Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8574, Japan
Naomi Harada
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka237-0061, Japan
*
*Corresponding author at e-mail: nagashimak@jamstec.go.jp (K. Nagashima)

Abstract

The Aleutian Low (AL) is one of the major atmospheric systems that determines environmental conditions during winter in the North Pacific Ocean, with impacts that affect the climates of both Asia and North America from mid- to high latitudes. However, the multi-centennial and longer scale behavior of the AL during the Holocene is not fully understood. In this study, AL variability since 7.5 ka was examined by applying the principal component analysis technique to published δ18O data derived from sedimentary calcite, peat, ice, and speleothem from western North America. The extracted Principal Component 1 (PC1) represents a dramatic change from the mid- to late Holocene, and appears to reflect long-term intensified AL related to interactions between orbitally-driven southward shift of the Westerly Jet (WJ) over East Asia and the northwestern Pacific, and intensification of the El Niño–Southern Oscillation. In contrast, PC2 is characterized by multi-centennial to millennial-scale oscillations, with a spatial loading pattern that suggests PC2 reflects AL intensity and position shifts. These oscillations are contemporaneous with both WJ latitude and/or the meandering path shifts over East Asia and solar activity change, suggesting that a decrease/increase in solar irradiance is related to AL variability via interactions with the WJ.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addison, J.A., Finney, B.P., Jaeger, J.M., Stoner, J.S., Norris, R.D., Hangsterfer, A., 2013. Integrating satellite observations and modern climate measurements with the recent sedimentary record: an example from Southeast Alaska. Journal of Geophysical Research: Oceans 118, 34443461.Google Scholar
Anderson, L., 2011. Holocene record of precipitation seasonality from lake calref δ18O in the central Rocky Mountains, United States. Geology 39, 211214.CrossRefGoogle Scholar
Anderson, L., 2012. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon. Global and Planetary Change 92–93, 198208.CrossRefGoogle Scholar
Anderson, L., Abbott, M.B., Finney, B.P., Burns, S.J., 2005. Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research 64, 2135.CrossRefGoogle Scholar
Anderson, L., Berkelhammer, M., Barron, J.A., Steinman, B.A., Finney, B.P., Abbott, M.B., 2016. Lake oxygen isotopes of Northern American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales. Global and Planetary Change 137, 131148.CrossRefGoogle Scholar
Arai, Y., 1958. Characteristics of long waves in westerlies related to solar-activity. Journal of Meteorological Society of Japan 36, 4654.CrossRefGoogle Scholar
Athanasiadis, P.J., Wallace, J.M., Wettstein, J.J., 2010. Patterns of wintertime jet stream variability and their relation to the storm tracks. Journal of the Atmospheric Sciences 67, 13611381.CrossRefGoogle Scholar
Bailey, H.L., Kaufman, D.S., Sloane, H.J., Hubbard, A.L., Henderson, A.C.G., Leng, M.J., Meyer, H., Welker, J.M., 2018. Holocene atmospheric circulation in the central North Pacific: a new terrestrial diatom and δ18O dataset from the Aleutian Islands. Quaternary Science Reviews 194, 2738.CrossRefGoogle Scholar
Barron, J.A., Anderson, L., 2011. Enhanced late Holocene ENSO/PDO expression along the margins of the eastern North Pacific. Quaternary International 235, 312.CrossRefGoogle Scholar
Beamish, R.J., Bouillon, D.R., 1993. Pacific salmon production trends in relation to climate. Canadian Journal of Fisheries and Aquatic Sciences 50, 10021016.CrossRefGoogle Scholar
Berkelhammer, M., Stott, L., Yoshimura, K., Johnson, K., Sinha, A., 2012. Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Climate Dynamics 38, 433454.CrossRefGoogle Scholar
Biondi, F., Gershunov, A., Cayan, D.R., 2001. North Pacific decadal climate variability since 1661. Journal of Climate 14, 510.2.0.CO;2>CrossRefGoogle Scholar
Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97, 163172.2.3.CO;2>CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Cane, M.A., 2005. The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, 227240.CrossRefGoogle Scholar
Cerny, B.A., Kaiser, H.F., 1977. A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Research 12, 4347.CrossRefGoogle ScholarPubMed
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J. et al. , 2019. Westerlies Asian and monsoon Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews 192, 337354.CrossRefGoogle Scholar
Clegg, B.F., Hu, F.S., 2010. An oxygen-isotope record of Holocene climate change in the south-central Brooks range, Alaska. Quaternary Science Reviews 29, 928939.CrossRefGoogle Scholar
Clement, A.C., Seager, R., Cane, M.A., 2000. Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, 731737.CrossRefGoogle Scholar
Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allen, R.J., Allan, R.J., Yin, X. et al. , 2011. The twentieth century reanalysis project. The Quarterly Journal of the Royal Meteorological Society 137, 128.CrossRefGoogle Scholar
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M., 2008. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 11661180.CrossRefGoogle Scholar
Cook, E.R., Meko, D.M., Stahle, D.W., Cleaveland, M.K., 1999. Drought reconstructions for the continental United States. Journal of Climate 12, 11451162.2.0.CO;2>CrossRefGoogle Scholar
Cook, E.R., Woodhouse, C.A., Eakin, C.M., Meko, D.M., Stahle, D.W., 2004. Long-term aridity changes in the western United States. Science 306, 10151018.CrossRefGoogle ScholarPubMed
D'Arrigo, R., Villalba, R., Wiles, G., 2001. Tree-ring estimates of Pacific decadal climate variability. Climate Dynamics 18, 219224.CrossRefGoogle Scholar
Di Lorenzo, E., Schneider, N., Cobb, K.M., Franks, P.J.S., Chhak, K., Miller, A.J., McWilliams, J.C. et al. , 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters 35, L08607, doi:10.1029/2007GL032838.CrossRefGoogle Scholar
Dole, R.M., Black, R.X., 1990. Life cycles of persistent anomalies. Part 2: The development of persistent negative height anomalies over the North Pacific Ocean. Monthly Weather Review 118, 824846.2.0.CO;2>CrossRefGoogle Scholar
Eddy, J.A., 1997. The case of the missing sunspots. Scientific American 236, 8088.CrossRefGoogle Scholar
Ersek, V., Clark, P.U., Mix, A.C., Cheng, H., Edwards, L., 2012. Holocene winter climate variability in mid-latitude western North America. Nature Communications 3:1219, doi:10.1038/ncomms2222.CrossRefGoogle ScholarPubMed
Ersek, V., Mix, A.C., Clark, P.U., 2010. Variations of δ18O in rainwater from southwestern Oregon. Journal of Geophysical Research 115, D09109, doi:10.1029/2009JD013345.CrossRefGoogle Scholar
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz, C., Bourgeois, J. et al. , 2008. The Mt Logan Holocene-late Wisconsinan isotope record: tropical Pacific-Yukon connections. The Holocene 18, 667677.CrossRefGoogle Scholar
Frame, T.H.A., Gray, L.J., 2010. The 11-year solar cycle in ERA-40 data: an update to 2008. Journal of Climate 23, 22132222.CrossRefGoogle Scholar
Francis, R.C., Hare, S.R., 1994. Decadal scale regime shifts in the large marine ecosystems of the North-east Pacific: a case for historical science. Fisheries Oceanography 3, 279291.CrossRefGoogle Scholar
Gleisner, H., Thejll, P., 2003. Patterns of tropospheric response to solar variability. Geophysical Research Letters 30, doi:10.1029/2003GL017129.CrossRefGoogle Scholar
Gray, L.J., Beer, J., Geller, M., Haigh, J.D., lockwood, M., Matthes, K., Cubasch, U., et al. , 2010. Solar influences on climate. Reviews of Geophysics 48, RG4001, doi:10.1029/2009RG000282.CrossRefGoogle Scholar
Haigh, J.D., 1996. The impact of solar variability on climate. Science 272, 981984.CrossRefGoogle ScholarPubMed
Haigh, J.D., 2003. The effects of solar variability on the Earth's climate. Philosophical Transactions of the Royal Society A 361, 95111.CrossRefGoogle Scholar
Haigh, J.D., Blackburn, M., Day, R., 2005. The response of tropospheric circulation to perturbations in lower-stratospheric temperature. Journal of Climate 18, 36723685.CrossRefGoogle Scholar
Han, W., , S., Appel, E., Berger, A., Madsen, D., Vandenberghe, J., Yu, L. et al. , 2019. Dust storm outbreak in Central Asia after ~3.5 kyr BP. Geophysical Research Letters 46, 76247633.CrossRefGoogle Scholar
Harada, N., Sato, M., Seki, O., Timmermann, A., Moossen, H., Bendle, J., Nakamura, Y. et al. , 2012. Sea surface temperature changes in the Okhotsk Sea and adjacent North Pacific during the last glacial maximum and deglaciation. Deep-Sea Research II 61–64, 93105.CrossRefGoogle Scholar
Harbert, R.S., Nixon, K.C., 2018. Quantitative late Quaternary climate reconstruction from plant macrofossil communities in western North America. Open Quaternary 4, 113.CrossRefGoogle Scholar
Horel, J.D., Wallace, J.M., 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review 109, 813829.2.0.CO;2>CrossRefGoogle Scholar
Ineson, S., Scaife, A.A., Knight, J.R., Manners, J.C., Dunstone, N.J., Gray, L.J., Haigh, J.D., 2011. Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geoscience 4, 753757.CrossRefGoogle Scholar
Janecek, T.R., Rea, D.K., 1985. Quaternary fluctuations in the northern hemisphere trade winds and westerlies. Quaternary Research 24, 150163.CrossRefGoogle Scholar
Jones, M.C., Wooller, M., Peteet, D.M., 2014. A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat. Quaternary Science Reviews 87, 111.CrossRefGoogle Scholar
Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrika 39, 3136.CrossRefGoogle Scholar
Kanamitsu, M., Kumar, A., Juang, H-M.H., Schemm, J-K., Wang, W., Yang, F., Hong, S-Y. et al. , 2002. NCEP dynamical seasonal forecast system 2000. Bulletin of the American Meteorological Society 83, 10191038.2.3.CO;2>CrossRefGoogle Scholar
Kaplan, M.R., Wolfe, A.P., 2006. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quaternary Research 65, 223231.CrossRefGoogle Scholar
Kaufman, D.S., Axford, Y.L., Henderson, A.C.G., McKay, N.P., Oswald, W.W., Saenger, C., Anderson, R.S. et al. , 2016. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence. Quaternary Science Reviews 147, 312339.CrossRefGoogle Scholar
Knudsen, M.F., Riisager, P., Jacobsen, B.H., Muscheler, R., Snowball, I., Seidenkrantz, M.S., 2009. Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Quaternary Research Letters 36, L16701, doi:10.1029/2009GL039439.CrossRefGoogle Scholar
Kodera, K., 1995. On the origin and nature of the interannual variability of the winter stratospheric circulation in the northern hemisphere. Journal of Geophysical Research 100, 14,07714,087.CrossRefGoogle Scholar
Kodera, K., Kuroda, Y., 2002. Dynamical response to the solar cycle. Journal of Geophysical Research 107, 4749, doi:10.1029/2002JD002224.CrossRefGoogle Scholar
Labitzke, K., 1987. Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophysical Research Letters 15, 535537.CrossRefGoogle Scholar
Latif, M., Barnett, T.P., 1994. Causes of decadal climate variability over the North Pacific and North America. Science 266, 634637.CrossRefGoogle ScholarPubMed
Lau, N-C., 1988. Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. Journal of the Atmospheric Sciences 45, 27182743.2.0.CO;2>CrossRefGoogle Scholar
Lim, J., Matsumoto, E., 2006. Bimodal grain-size distribution of aeolian quartz in a maar of Cheju Island, Korea, during the last 6500 years: its flux variation and controlling factor. Geophysical Research Letters 33, L21816, doi:10.1029/2006GL027432.CrossRefGoogle Scholar
Lim, J., Matsumoto, E., 2008. Fine aeolian quartz records in Cheju Island, Korea, during the last 6500 years and pathway change of the westerlies over east Asia. Journal of Geophysical Research 113, D08106, doi:10.1029/2007JD008501.CrossRefGoogle Scholar
Liu, Z., Tang, Y., Jian, Z., Poulsen, C.J., Welker, J.M., Bowen, G.J., 2017. Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium. Proceedings of the National Academy of Sciences of the United States of America 114, 33403345.CrossRefGoogle ScholarPubMed
Liu, Z., Yoshimura, K., Bowen, G.J., Buenning, N.H., Risi, C., Welker, J.M., Yuan, F., 2014. Paired oxygen isotope records reveal modern North American atmospheric dynamics during the Holocene. Nature Communications 5, 3701, doi:10.1038/ncomms4701.CrossRefGoogle ScholarPubMed
MacDonald, G.M., Case, R.A., 2005. Variations in the Pacific Decadal Oscillation over the past millennium. Geophysical Research Letters 32, L08703, doi:10.1029/2005GL022478.CrossRefGoogle Scholar
Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78, 10691080.2.0.CO;2>CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A. et al. , 2004. Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., van Loon, H., 2009. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325, 11141118.CrossRefGoogle ScholarPubMed
Mori, M., Watanabe, M., 2008. The growth and triggering mechanisms of the PNA: a MJO-PNA coherence. Journal of the Meteorological Society of Japan 86, 213236.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene. Nature 420, 162165.CrossRefGoogle ScholarPubMed
Nagashima, K., Tada, R., Matsui, H., Irino, T., Tani, A., Toyoda, S., 2007. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247, 144161.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S., Hasegawa, H., 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences 40, 12141220.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Toyoda, S., 2013. Westerly jet-East Asian summer monsoon connection during the Holocene. Geochemistry Geophysics Geosystems 14, 50415053.CrossRefGoogle Scholar
Nakamura, H., Izumi, T., Sampe, T., 2002. Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. Journal of Climate 15, 18551874.2.0.CO;2>CrossRefGoogle Scholar
Neukom, R., Steiger, N., Gomez-Navarro, J.J., Wang, J., and Werner, J.P., 2019. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550554.CrossRefGoogle ScholarPubMed
Newman, M., Alexander, M.A., Ault, T.R., Cobb, K.M., Deser, C., Di Lorenzo, E., Mantua, N.J. et al. , 2016. The Pacific Decadal Oscillation, revisited. Journal of Climate 29, 43994427.CrossRefGoogle Scholar
Ono, Y., Naruse, T., Ikeya, M., Kohno, H., Toyoda, S., 1998. Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia, suggested by ESR signal intensity. Global and Planetary Change 18, 129135.CrossRefGoogle Scholar
Osterberg, E.C., Mayewski, P.A., Fisher, D.A., Kreutz, K.J., Maasch, KA., Sneed, S.B., Kelsey, E., 2014. Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1988 A.D. Journal of Geophysical Research: Atmospheres 119, 11, 189–11, 204.Google Scholar
Osterberg, E.C., Winski, D.A., Kreutz, K.J., Wake, C.P., Ferris, D.G., Campbell, S., Introne, D., Handley, M., Birkel, S., 2017. The 1200 year composite ice core record of Aleutian Low intensification. Geophysical Research Letters 44, 74477454.CrossRefGoogle Scholar
Overland, J.E., Adams, J.M., Bond, N.A., 1999. Decadal variability of the Aleutian Low and its relation to high-latitude circulation. Journal of Climate 12, 15421548.2.0.CO;2>CrossRefGoogle Scholar
Park, J.H., An, S.L., 2014. The impact of tropical western Pacific convection on the North Pacific atmospheric circulation during the boreal winter. Climate Dynamics 43, 22272238. doi:10.1007/s00382-013-2047-7.CrossRefGoogle Scholar
Rea, D.K., Leinen, M., 1988. Asian aridity and the zonal westerlies: late Pleistocene and Holocene record of eolian deposition in the northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 18.CrossRefGoogle Scholar
Renwick, J.A., Wallace, J.M., 1996. Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Monthly Weather Review 124, 20712076.2.0.CO;2>CrossRefGoogle Scholar
Rodinov, S.N., Overland, J.E., Bond, N.A., 2005. The Aleutian Low and winter climate conditions in the Bering Sea. Part I: Classification. Journal of Climate 18, 160177.Google Scholar
Rodionov, S.N., Bond, N.A., Overland, J.E., 2007. The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep-Sea Research II 54, 25602577.CrossRefGoogle Scholar
Schiff, C.J., Kaufman, D.S., Wolfe, A.P., Dodd, J., Sharp, Z., 2009. Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. Journal of Paleolimnology 41, 189209.CrossRefGoogle Scholar
Shindell, D.T., Schmidt, G.A., Mann, M.E., Rind, D., Waple, A., 2001. Solar forcing of regional climate change during the Maunder Minimum. Science 294, 21492152.CrossRefGoogle ScholarPubMed
Shindell, D.T., Schmidt, G.A., Miller, R.L., Mann, M.E., 2003. Volcanic and solar forcing of climate change during the preindustrial era. Journal of Climate 16, 40944107.2.0.CO;2>CrossRefGoogle Scholar
Shuman, B.N., Marsicek, J., 2016. The structure of Holocene climate change in mid-latitude North America. Quaternary Science Reviews 141, 3851.CrossRefGoogle Scholar
Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J., 2004. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 10841087.CrossRefGoogle ScholarPubMed
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I, Christl, M., Fischer, H., Heikkilä, U. et al. , 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America, 109, 59675971.CrossRefGoogle ScholarPubMed
Steinman, B.A., Abbott, M.B., 2013. Isotopic and hydrologic responses of small, closed lakes to climate variability: hydroclimate reconstructions from lake sediment oxygen isotope records and mass balance models, Geochimica et Cosmochimica Acta 105, 342359.CrossRefGoogle Scholar
Steinman, B.A., Pompeani, D.P., Abbott, M.B., Ortiz, J.D., Stansell, N.D., Finkenbinder, M.S., Mihindukulasooriya, L.N., Hillman, A.L., 2016. Oxygen isotope records of Holocene climate variability in the Pacific Northwest. Quaternary Science Reviews 142, 4060.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., Becker, B., Kromer, B., 1991. Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35, 124.CrossRefGoogle Scholar
Sugimoto, S., Hanawa, K., 2009. Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. Journal of the Meteorological Society of Japan 87, 601614.CrossRefGoogle Scholar
Sun, D., 2004. Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China. Global and Planetary Change 41, 6380.Google Scholar
Sun, J., Zhang, M., Liu, T., 2001. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. Journal of Geophysical Research 106, 1032510333.CrossRefGoogle Scholar
Ter Braak, C.F.J., and Prentice, I.C., 1988. A theory of gradient analysis. Advances in Ecological Research 18, 271317.CrossRefGoogle Scholar
Thompson, D.W.J., Wallace, J.M., 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters 25, 12971300.CrossRefGoogle Scholar
Trenberth, K.E., Hurrell, J.W., 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics 9, 303319.CrossRefGoogle Scholar
Usoskin, I.G., 2017. A history of solar activity over millennia. Living Reviews in Solar Physics 14, A3.CrossRefGoogle Scholar
Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A., Hulot, G., 2016. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astronomy and Astrophysics 587, A150.CrossRefGoogle Scholar
Vachon, R.W., White, J.W.C., Gutmann, E., Welker, J.M., 2007. Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: a sensitivity study. Geophysical Research Letters 34, L21707, doi:10.1029/2007GL030547.CrossRefGoogle Scholar
Vasiliev, S.S., Dergachev, V.A., 2002. The 2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Annales Geophysicae 20, 115120.CrossRefGoogle Scholar
Viau, A.E., Gajeski, K., Sawada, M.C., Bunbury, J., 2008. Low- and high-frequency climate variability in eastern Beringia during the past 25000 years. Canadian Journal of Earth Sciences 45, 14351453.CrossRefGoogle Scholar
Wallace, J.M., and Gutzler, D.S., 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Reviews 109, 784812.2.0.CO;2>CrossRefGoogle Scholar
White, W.B., Barnett, T.P., 1972. A servomechanism in the ocean/atmosphere system of the mid-latitude North Pacific. Journal of Physical Oceanography 2, 372381.2.0.CO;2>CrossRefGoogle Scholar
Wooller, M.J., Kurek, J., Gaglioti, B.V., Cwynar, L.C., Bigelow, N., Reuther, J.D., Gelvin-Reymiller, C., Smol, J.P., 2012. An ~11,200 year paleolimnological perspective for emerging archaeological findings at Quartz Lake, Alaska. Journal of Paleolimnology 48, 8399.CrossRefGoogle Scholar
Yang, S., Lau, K.M., Kim, K.M., 2002. Variations of the East Asian Jet Stream and Asian-Pacific-American winter climate anomalies. Journal of Climate 15, 306325.2.0.CO;2>CrossRefGoogle Scholar
Yoshimura, K., 2015. Stable water isotopes in climatology, meteorology, and hydrology: a review. Journal of the Meteorological Society of Japan 92, 513533.CrossRefGoogle Scholar
Yoshimura, K., Kanamitsu, M., Noone, D., Oki, T., 2008. Historical isotope simulation using reanalysis atmospheric data. Journal of Geophysical Research 113, D19108.CrossRefGoogle Scholar
Yuan, F., Koran, M.R., Valdez, A., 2013. Late Glacial and Holocene record of climatic change in the southern Rocky Mountains from sediments in San Luis Lake, Colorado, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 146160.CrossRefGoogle Scholar
Supplementary material: PDF

Nagashima et al. supplementary material

Figures S1-S3

Download Nagashima et al. supplementary material(PDF)
PDF 690 KB
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Aleutian Low variability for the last 7500 years and its relation to the Westerly Jet
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Aleutian Low variability for the last 7500 years and its relation to the Westerly Jet
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Aleutian Low variability for the last 7500 years and its relation to the Westerly Jet
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *