Skip to main content Accessibility help
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.595 Render date: 2022-08-11T15:11:20.822Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends

Published online by Cambridge University Press:  20 January 2017

Ronald J. Litwin*
MS926A, USGS National Center, Reston, VA 20192, USA
Joseph P. Smoot
MS926A, USGS National Center, Reston, VA 20192, USA
Milan J. Pavich
MS926A, USGS National Center, Reston, VA 20192, USA
Helaine W. Markewich
USGS, 1770 Corporate Dr., Suite 500, Norcross, GA 30093, USA
George Brook
Department of Geography, University of Georgia, Athens, GA 30602, USA
Nancy J. Durika
MS926A, USGS National Center, Reston, VA 20192, USA
*Corresponding author. E-mail (R.J. Litwin).


We document frequent, rapid, strong, millennial-scale paleovegetation shifts throughout the late Pleistocene, within a 100,000+ yr interval (~ 115–15 ka) of terrestrial sediments from the mid-Atlantic Region (MAR) of North America. High-resolution analyses of fossil pollen from one core locality revealed a continuously shifting sequence of thermally dependent forest assemblages, ranging between two endmembers: subtropical oak-tupelo-bald cypress-gum forest and high boreal spruce-pine forest. Sedimentary textural evidence indicates fluvial, paludal, and loess deposition, and paleosol formation, representing sequential freshwater to subaerial environments in which this record was deposited. Its total age"depth model, based on radiocarbon and optically stimulated luminescence ages, ranges from terrestrial oxygen isotope stages (OIS) 6 to 1. The particular core sub-interval presented here is correlative in trend and timing to that portion of the oxygen isotope sequence common among several Greenland ice cores: interstades GI2 to GI24 (≈ OIS2–5 d). This site thus provides the first evidence for an essentially complete series of "Dansgaard"Oeschger" climate events in the MAR. These data reveal that the ~ 100,000 yr preceding the Late Glacial and Holocene in the MAR of North America were characterized by frequently and dynamically changing climate states, and by vegetation shifts that closely tracked the Greenland paleoclimate sequence.

Original Articles
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adam, D.P., (1988). Palynology of two Upper Quaternary cores from Clear Lake, Lake County, California, U.S. Geological Survey Professional Paper 1363, 186.Google Scholar
Alley, R.B., Shuman, C.A., Meese, D.A., Gow, A.J., Taylor, K.C., Cuffey, K.M., Fitzpatrick, J.J., Grootes, P.M., Zielinski, G.A., Ram, M., Spinelli, G., Elder, B., (1997). Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. Journal of Geophysical Research 102, C12 26,36726,381.CrossRefGoogle Scholar
Alley, R.B., Anandakrishnan, S., Jung, P., (2001). Stochastic resonance in the North Atlantic. Paleoceanography 16, 190198.CrossRefGoogle Scholar
Andersen, K.K., Svensson, A., Rasmussen, S.O., Steffensen, J.P., Johnsen, S.J., Bigler, M., Rőthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Dahl-Jensen, D., Vinther, B.M., Clausen, H.B., (2006). The Greenland Ice Core Chronology 2005, 15-42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.CrossRefGoogle Scholar
Anderson, P.M., Bartlein, P.J., Brubaker, L.B., Gajewski, K., Ritchie, J.C., (1991). Vegetation-pollen-climate relationships for the arcto-boreal region of North America and Greenland. Journal of Biogeography 18, 565582.CrossRefGoogle Scholar
Bartlein, P.J., Prentice, C., Webb III, T., (1986). Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13, 3557.CrossRefGoogle Scholar
Beaven, G.F., Oostling, H.J., (1939). Pocomoke Swamp: a study of a cypress swamp on the eastern shore of Maryland. Bulletin of the Torrey Botanical Club 66, 6 367389.CrossRefGoogle Scholar
Bebout, J., (1981). An informal palynological zonation for the Cretaceous System of the United States Mid-Atlantic (Baltimore Canyon area) outer continental shelf. Palynology 5, 159194.CrossRefGoogle Scholar
Behl, R.J., Kennett, J.P., (1996). Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243246.CrossRefGoogle Scholar
Bennett, K.D., (2008). Psimpoll v. 4.263. (last accessed 04/18/2013).Google Scholar
Benson, L., Lund, S., Negrini, R., Linsley, B., Zic, M., (2003). Response of Great Basin lakes to Dansgaard-Oeschger oscillations. Quaternary Science Reviews 22, 22392251.CrossRefGoogle Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245249.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Brenner, G.J., (1963). The spores and pollen of the Potomac Group. Maryland Department of Geology, Mines, and Water Resources Bulletin 27, (115 pp.).Google Scholar
Broecker, W., (1994). Massive iceberg discharges as triggers for global climate change. Nature 372, 421424.CrossRefGoogle Scholar
Broecker, W., Bond, G., Klas, M., Clark, E., McManus, J., (1992). Origin of the northern Atlantic's Heinrich events. Climate Dynamics 6, 265273.CrossRefGoogle Scholar
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., Al-Subbary, A.A., (2003). Absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 13651367.CrossRefGoogle ScholarPubMed
Campbell, I.D., McDonald, K., Flannigan, M.D., Kringayark, J., (1999). Long-distance transport of pollen into the Arctic. Nature 399, 2930.CrossRefGoogle Scholar
Christopher, R.A., (1982). Palynostratigraphy of the basal Cretaceous units of the eastern Gulf and Southern Atlantic Coastal Plains. Arden, D.D., Beck, B.F., Morrow, E. Proceedings, Second Symposium on the Geology of the southeastern Coastal Plain: Georgia Geological Survey Information Circular 53, 1023.Google Scholar
Clark, P.U., Bartlein, P.J., (1995). Correlation of late Pleistocene glaciation in the western United States with North Atlantic Heinrich events. Geology 23, 6 483486.2.3.CO;2>CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., (2009). The Last Glacial Maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Cohen, A.D., (1974). Petrology and paleoecology of Holocene peats from the Okefenokee swamp-marsh complex of Georgia. Journal of Sedimentary Petrology 44, 3 716736.Google Scholar
Correa-Metrio, A., Bush, M.B., Cabrera, K.R., Sully, S., Brenner, M., Escobar, J., Guilderson, T., (2012). Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quaternary Science Reviews 38, 6375.CrossRefGoogle Scholar
Crisman, T.L., Whitehead, D.R., (1975). Environmental history of Hovey Lake, southwestern Indiana. American Midland Naturalist 93, 1 198205.CrossRefGoogle Scholar
Cronin, T., Willard, D., Karlsen, A., Ishman, S., Verardo, S., McGeehin, J., Kerhin, R., Holmes, C., Colman, S., Zimmerman, A., (2000). Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 28, 1 36.2.0.CO;2>CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Davis, R.B., Webb III, T., (1975). The contemporary distribution of pollen in eastern North America: a comparison with the vegetation. Quaternary Research 5, 395434.CrossRefGoogle Scholar
Day jr., F.P., (1985). Tree growth rates in the periodically flooded Great Dismal Swamp. Castanea 50, 2 8995.Google Scholar
Delcourt, H.R., West, D.C., Delcourt, P.A., (1981). Forests of the southeastern United States: quantitative maps for aboveground woody biomass, carbon, and dominance of major tree taxa. Ecology 62, 4 879887.CrossRefGoogle Scholar
Didier Rousseau, D., Duzer, D., Cambon, G., Jolly, D., Poulsen, U., Ferrier, J., Schevin, P., Gros, R., (2003). Long distance transport of pollen to Greenland. Geophysical Research Letters 30, 14 765 10.1029/2003GL017539.Google Scholar
Donders, T.H., de Boer, H., Finsinger, W., Grimm, E.C., Dekker, S., Reichert, G.J., Wagner-Cremer, F., (2011). Impact of the Atlantic Warm Pool on precipitation and temperature in Florida during North Atlantic cold spells. Climate Dynamics 36, 109118.CrossRefGoogle Scholar
Dong, H., Wang, Y., Cheng, H., Hardt, B., Edwards, R.L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X., Zhao, K., (2010). A high-resolution stalagmite record of the Holocene East Asian Monsoon from Mt. Shennongjia, central China. The Holocene 20, 2 257264.CrossRefGoogle Scholar
Doyle, J.A., Robbins, E.I., (1977). Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. Palynology 1, 4378.CrossRefGoogle Scholar
(1989). Ecoregions Working Group, 1989. Ecoclimatic regions of Canada, First Approximation. Ecoregions Working Group of the Canada Committee on ecological land classification.. Ecological Land Classification Series, No. 23, Sustainable Development Branch, Canadian Wildlife Service, Environment Canada., Ottawa, Ontario, 119 p. and map, 1:750000.Google Scholar
Edwards, L.E., Powars, D.S., Horton jr., J.W., Gohn, G.S., Self-Trail, J.M., Litwin, R.J., (2010). Inside the crater, outside the crater: stratigraphic details of the margin of the Chesapeake Bay impact structure, Virginia, U.S.A.. Gibson, R.L., Reimold, W.U. Large meteorite impacts and Planetary Evolution IV: Geological Society of America Special Paper 465, 319393.CrossRefGoogle Scholar
Fair-Page, T., Cohen, A.D., (1990). Paleoecological history of west-central Okefenokee Swamp based on palynologic and petrographic analysis. Palynology 14, 2739.CrossRefGoogle Scholar
Fr"chette, B., de Vernal, A., Guiot, J., Wolfe, A.P., Miller, G.H., Fredskild, B., Kerwin, M.W., Richard, P.J.H., (2008). Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quaternary Science Reviews 27, 11971216.CrossRefGoogle Scholar
Froelich, A.J., Johnston, R.H., Langer, W.H., (1978). Preliminary report on the ancestral Potomac River deposits in Fairfax County, Virginia, and their potential hydrogeologic significance. U.S. Geological Survey Open-File Report 78-544, 137.Google Scholar
Fuller, J.L., (1998). Ecological impact of the mid-Holocene Hemlock decline in southern Ontario, Canada. Ecology 79, 7 23372351.CrossRefGoogle Scholar
Gajewski, K., (1988). Late Holocene climate changes in Eastern North America estimated from pollen data. Quaternary Research 29, 255262.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., (2003). Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.CrossRefGoogle ScholarPubMed
Goman, M., Leigh, D.S., (2004). Wet early to middle Holocene conditions on the upper Coastal Plain of North Carolina, USA. Quaternary Research 61, 256264.CrossRefGoogle Scholar
Grimm, E.C., (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1325.CrossRefGoogle Scholar
Grimm, E.C., Jacobsen jr., G.L., Watts, W.A., Hansen, B.C.S., Maasch, K., (1993). A 50,000-the Heinrich events. Science 261, 5118 year record of climate oscillations from Florida and its temporal correlation with 198200.CrossRefGoogle Scholar
Grimm, E.C., Watts, W.A., Jacobson jr., G.L., Hansen, B.C.S., Almquist, H.R., Dieffenbacher-Krall, A.C., (2006). Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25, 21972211.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Hardt, B., Rowe, H.D., Springer, G.S., Cheng, H., Edwards, R.L., (2010). The seasonality of east central North American precipitation based on three coeval Holocene speleothems from southern West Virginia. Earth and Planetary Science Letters 295, 342348.CrossRefGoogle Scholar
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., Smith, D.G., (1990). A Geologic Time scale 1989. Cambridge University Press, Cambridge.(263 pp.).Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Heinrich, H., (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 142152.CrossRefGoogle Scholar
Hemming, S.R., (2004). Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, 1 10051048.CrossRefGoogle Scholar
Heusser, L.E., (1995). Pollen stratigraphy and paleoecologic interpretation of the 160-k.y. record from Santa Barbara Basin, Hole 893A. Kennett, J.P., Baldauf, J.G., Lyle, M. Proceedings of the Ocean Drilling Program, Scientific Results 146 (2), 265279.Google Scholar
Heusser, L.E., (2000). Rapid oscillations in North America vegetation and climate during oxygen isotope stage 5 inferred from pollen data from Santa Barbara Basin (Hole 893A). Palaeogeography, Palaeoclimatology, Palaeoecology 161, 407421.CrossRefGoogle Scholar
Heusser, L., Oppo, D., (2003). Millennial- and orbital-scale climate variability in southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5: evidence from pollen and isotopes in ODP Site 1059. Earth and Planetary Science Letters 214, 483490.CrossRefGoogle Scholar
Hochuli, P.A., Heimhofer, U., Weissart, H., (2006). Timing of early angiosperm radiation: recalibrating the classical succession. Journal of the Geological Society of London 163, 587594.CrossRefGoogle Scholar
Howell, P., Pisias, N., Balance, J., Baughman, J., Ochs, L., (2006). ARAND time-series analysis software. Brown University, Providence, RI.Google Scholar
Jackson, S.T., Webb, R.S., Anderson, K.H., Overpeck, J.T., Webb III, T., Williams, J.W., Hansen, B.C.S., (2000). Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quaternary Science Reviews 19, 489508.CrossRefGoogle Scholar
Jim"nez-Moreno, G., Anderson, R.S., Fawcett, P.J., (2007). Orbital- and millennial-scale climate changes of the past 225 ka from Bear Lake, Utah"Idaho (USA). Quaternary Science Reviews 26, 17131724.CrossRefGoogle Scholar
Jim"nez-Moreno, G., Anderson, R.S., Desprat, S., Grigg, L.D., Grimm, E.C., Heusser, L.E., Jacobs, B.F., López-Martínez, C., Whitlock, C.L., Willard, D.A., (2010). Millennial-scale variability during the last glacial in vegetation records from North America. Quaternary Science Reviews 29, 28652881.CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., Steffensen, J.P., (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.CrossRefGoogle Scholar
Johnsen, S.J., Dahl-Jenssen, D., Dansgaard, W., Gundestrup, N., (1995). Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B, 624629.CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbj"rnsd"ttir, A.E., White, J.W.C., Jouzel, J., Fisher, D., (1997). The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, 2639726410.CrossRefGoogle Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbj"rnsdottir, A.E., White, J., (2001). Oxygen isotope and paleotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland, and NorthGrip. Journal of Quaternary Science 16, 4 299307.CrossRefGoogle Scholar
Jouzel, J., Alley, R.B., Cuffey, K.M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S.J., Koster, S.D., Peel, D., Shuman, C.A., Stievenard, M., Stuiver, M., White, J., (1997). Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, C12 26,47126,478.CrossRefGoogle Scholar
Landacre, B.D., Bernhardt, C., Willard, D., (2012). A high-resolution late Holocene pollen record from an old-growth cypress-tupelo swamp, Cypress Bridge, VA. Geological Society of America Abstracts with Programs 44, 7 423.Google Scholar
Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M., Narcisi, B.M., Parrenin, F., (2010). Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Reviews 29, 820.CrossRefGoogle Scholar
Li, C., Battisti, D.S., Schrag, D.P., Tziperman, E., (2005). Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophysical Research Letters 32, L19702 .CrossRefGoogle Scholar
Lickey, E.B., Walker, G.L., (2002). Population genetic structure of baldcypress (Taxodium distichum [L.] Rich. var. distichum) and pondcypress (T. distichum var. imbricarium [Nuttall] Croom): biogeographic and taxonomic implications. Southeastern Naturalist 1, 2 131148.CrossRefGoogle Scholar
Little jr., E.L., (1971). Atlas of United States Trees. Volume 1. Conifers and important hardwoods. Miscellaneous Publication No. 1146. U.S. Department of Agriculture, Forest Service, Washington, D.C..Google Scholar
Litwin, R.J., Smoot, J.P., Durika, N.J., Smith, G.I., (1999). Calibrating late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA. Quaternary Science Reviews 18, 11511171.CrossRefGoogle Scholar
Litwin, R.J., Smoot, J.P., Pavich, M.J., Markewich, H.W., Brook, G., Verardo, S., (2010). Hybla cores 7 & 8: an 80,000-Atlantic Coastal Plain of North America. Geological Society of America, Abstracts with Programs 42, 1 year Late Pleistocene climate record from the Mid-151.Google Scholar
Lowry, D.L., O'Neal, M.A., Wah, J.S., Wagner, D.P., Stanford, D.J., (2010). Late Pleistocene upland stratigraphy of the western Delmarva Peninsula, USA. Quaternary Science Reviews 29, 14721480.CrossRefGoogle Scholar
Markewich, H.W., Litwin, R.J., Pavich, M.J., Brook, G.A., (2008). Evidence for strong WNW"NW winds off the Laurentide ice sheet recorded in Chesapeake region dunes. American Quaternary Association, Program and Abstracts. 178.Google Scholar
Markewich, H.W., Litwin, R.J., Pavich, M.J., Brook, G.A., (2009). Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW"NW winds accompanied growth of the Laurentide ice sheet. Quaternary Research 71, 3 409425.CrossRefGoogle Scholar
Markewich, H.W., Pavich, M.J., Litwin, R.J., (2010). Eolian-deposit age, paleowind, and pollen data as evidence for periods of aridity and strong winds in the U.S. Mid-Atlantic and southeastern Coastal Plain during rapid growth of the Late Quaternary Laurentide ice sheet. Geological Society of America, Abstracts with Programs 42, 1 150.Google Scholar
Markewich, H.W., Pavich, M.J., Litwin, R.J., Smoot, J.P., (2011). Evidence for late OIS3 abrupt climate change preserved in the Delmarva Peninsula stratigraphic record. Geological Society of America, Abstracts with Programs 43, 5 33.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore jr., T.C., Shackleton, N.J., (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-Research 27, year chronostratigraphy. Quaternary 129.Google Scholar
Meese, D.A., Gow, A.J., Alley, R.B., Zielinski, G.A., Grootes, P.M., Ram, M., Taylor, K.C., Mayewski, P.A., Bolzan, J.F., (1997). The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102, C12 26,41126,423.CrossRefGoogle Scholar
Middleton, B.A., McKee, K.L., (2004). Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environmental change. Global Ecology and Biogeography 13, 247258.CrossRefGoogle Scholar
Mixon, R.B., Newell, W.L., (1977). Stafford fault system: structures documenting Cretaceous and Tertiary deformation along the Fall Line in northeastern Virginia. Geology 5, 7 437.2.0.CO;2>CrossRefGoogle Scholar
Mixon, R.B., Pavlides, , Louis, , Horton, J.W., Jr., Powars, D.S., Schindler, J.S., (2005). Geologic map of the Stafford Quadrangle. Stafford County, Virginia. U.S. Geological Survey Scientific Investigations Map 2841, 1 sheet, 1:24,000.Google Scholar
North Greenland Ice Core Project members, (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Ogg, J.G., Agterburg, F.P., Gradstein, F.M., (2004). The Cretaceous Period. Gradstein, F., Ogg, J., Smith, A. A Geologic Time Scale 2004: Cambridge. Cambridge University Press, U.K..344383.Google Scholar
Overpeck, J.T., Bartlein, P.J., Webb III, T., (1991). Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science 254, 692695.CrossRefGoogle ScholarPubMed
Pavich, M.J., Markewich, H.W., Litwin, R.J., Brook, G.A., (2008). Measurement of glacioisostatic adjustments in the Mid-Atlantic region for the last two glacial cycles. American Quaternary Association, Program and Abstracts, 2008 Biennial Meeting. Pennsylvania State University, 190.Google Scholar
Pavich, M.J., Markewich, H.W., Smoot, J., Litwin, R., Verardo, S., Brook, G., (2009a). Sea level history of Chesapeake Bay since 117 ka based on OSL dating of estuarine sediments. Geological Society of America, Abstracts with Programs 41, 7 351.Google Scholar
Pavich, M., Markewich, H., Newell, W.L., Litwin, R., Smoot, J., Brook, G., (2009b). Imprint of Late Quaternary climate change on the Mid-Atlantic landscape. Eos Transactions AGU 90, 52 (Fall Meeting Supplement, Abstract EP41C-0634).Google Scholar
Pavich, M.J., Markewich, H.W., Litwin, R.J., Smoot, J.P., Brook, G.A., (2010a). Significance of marine oxygen isotope stage OIS5a and OIS3 OSL dates from estuarine sediments flanking the Chesapeake Bay. Geological Society of America, Abstracts with Programs 42, 1 101.Google Scholar
Pavich, M.J., Markewich, H.W., Wysocki, D.A., Litwin, R.J., Smoot, J.P., Brook, G.A., (2010b). High Point paleosol: record of early Wisconsinan pedogenesis on the Potomac River. Geological Society of America, Abstracts with Programs 42, 5 231.Google Scholar
Phillips, F.M., Campbell, A.R., Smith, G.I., Bischoff, J.L., (1994). Interstadial climate cycles: a link between western North America and Greenland?. Geology 22, 11151118.2.3.CO;2>CrossRefGoogle Scholar
Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., Sharma, P., (1996). Chronology of fluctuations in Late Pleistocene Sierra Nevada glaciers and lakes. Science 274, 749751.CrossRefGoogle Scholar
Prasad, A.M., Iverson, L.R., Matthews, S., Peters, M., (2007). A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States [database]. Northern Research Station, USDA Forest Service, Delaware, Ohio.(last accessed on 02/29/2012, at Scholar
Prentice, I.C., Bartlein, P.T., Webb II, T., (1991). Vegetation and climate change in Eastern North America since the Last Glacial Maximum. Ecology 72, 6 20382056.CrossRefGoogle Scholar
Rader, E.K., Evans, N.H., (1993). Geologic Map of Virginia; Expanded explanation. Virginia Division of Mineral Resources, Charlottesville, Virginia.(80 pp.).Google Scholar
Rahmstorf, S., (2003). Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30, 3 14. .CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., (2004). The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 101116.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Rőthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., Ruth, U., (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102(16 pp.).CrossRefGoogle Scholar
Rasmussen, S.O., Seierstad, I.K., Andersen, K.K., Bigler, M., Dahl-Jensen, D., Johnsen, S.J., (2008). Synchronization of the NGRIP, GRIP, and GISP2 cores across MIS 2 and paleoclimatic implications. Quaternary Science Reviews 27, 1828.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). INTCAL09 and MARINE09 radiocarbon age calibration curves, 0"50,000 years cal BP. Radiocarbon 51, 4 11111150.CrossRefGoogle Scholar
Rich, F.J., Spackman, W., (1979). Modern and ancient pollen sedimentation around tree islands in the Okefenokee Swamp. Palynology 3, 219226.CrossRefGoogle Scholar
Rohling, E.J., Mayewski, P.A., Challenor, P., (2003). On the timing and mechanism of millennial-scale climate variability during the last glacial cycle. Climate Dynamics 20, 257267.CrossRefGoogle Scholar
S"nchez Go"i, M.F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt, J.O., Shackleton, N.J., (2002). Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105.Google Scholar
S"nchez Go"i, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., (2008). Contrasting impacts of Dansgaard"Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.CrossRefGoogle Scholar
Saunders, R., Krebs, W., Wrenn, J.H., Bryant, V.M., (2009). Coastal dynamics and cultural occupations on Choctawhatchee Bay, Florida, U.S.A.. Palynology 33, 2 135156.CrossRefGoogle Scholar
Schulz, M., (2002). On the 1470 year pacing of Dansgaard-Oeschger warm events. Paleoceanography 17, 2 19.Google Scholar
Seiders, V.M., Mixon, R.B., (1981). Geologic Map of the Occoquon Quadrangle and part of the Fort Belvoir Quadrangle. Prince William and Fairfax Counties, Virginia. U.S.G.S. Miscellaneous Investigations Series, Map I-1175, 1:24,000.Google Scholar
Shackleton, N.J., Fairbanks, R.G., Tzu-chien, C., Parrenin, F., (2004). Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23, 15131522.CrossRefGoogle Scholar
Smoot, J.P., (2004). Sedimentary fabrics of stratified slope deposits at a site near Hoover's Camp, Shenandoah National Park, Virginia. USGS Open-File Report 2004-1059. (26 pp.).Google Scholar
Smoot, J.P., Newell, W.L., DeJong, B.D., (2009). Investigation into the origin and character of surficial sedimentary deposits at the Midshore Regional Solid Waste Facility near Easton, Maryland. USGS Open-File Report 2009"1052. (69 pp.).Google Scholar
Sp"tl, C., Mangini, A., (2002). Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters 203, 507518.CrossRefGoogle Scholar
Stuiver, M., Grootes, P.M., (2000). GISP2 oxygen isotope ratios. Quaternary Research 53, 277284.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35, 1 215230.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Rőthlisberger, R., Steffensen, J.P., Vinther, B.M., (2006). The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 32583267.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Rőthlisberger, R., Seierstad, I., Steffensen, J.P., Vinther, B.M., (2008). A 60 000 of the Past 4, year Greenland stratigraphic ice core chronology. Climate 4757.Google Scholar
Taylor, K.C., Lamorey, G.W., Doyle, G.A., Alley, R.B., Grootes, P.M., Mayeski, P.A., White, J.W.C., Barlow, L.K.W., (1993). The ‘flickering switch’ of late Pleistocene climate change. Nature 361, 432436.CrossRefGoogle Scholar
U.S. Geological Survey, (2011). National Elevation Dataset 1/3 arc-second (NED 1/3): Seamless Data Warehouse. EROS Data Center, (last accessed March 4, 2011 at Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A.M., Olsen, J., Heinemeier, J., (2006). A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research 111, D13102(11 pp.).CrossRefGoogle Scholar
Visser, J.M., Sasser, C.E., (1995). Changes in tree species composition, structure and growth in a baldcypress-water tupelo swamp forest, 1980-1990. Forest Ecology and Management 72, 119129.CrossRefGoogle Scholar
Wang, H., Hughes, R.E., Steele, J.D., Lepley, S.W., Tian, J., (2003). Correlation of climate cycles in middle Mississippi Valley loess and Greenland ice. Geology 31, 2 179182.2.0.CO;2>CrossRefGoogle Scholar
Watts, W.A., Stuiver, M., (1980). Late Wisconsin climate of northern Florida and the origin of species-rich deciduous forest. Science 210, 4467 325327.CrossRefGoogle ScholarPubMed
Watts, W.A., Hansen, B.C.S., Grimm, E.C., (1992). A 40 000-yr record of vegetational and forest history from northwest Florida. Ecology 73, 3 10561066.CrossRefGoogle Scholar
Whitehead, D.R., (1972). Developmental and environmental history of the Dismal Swamp. Ecological Monographs 42, 3 301315.CrossRefGoogle Scholar
Willard, D.A., Brown, R., Damon, J., Hupp, C.R., Landacre, B., Townsend, P., (2003). Pollen representation of forested wetland plant communities, Atlantic Coastal Plain rivers (USA). Geological Society of America, Abstracts with Programs 35, 6 211.Google Scholar
Willard, D.A., Bernhardt, C.E., Korejwo, D.A., Meyers, S.R., (2005). Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: pollen-based climatic reconstruction. Global and Planetary Change 47, 1735.CrossRefGoogle Scholar
Willard, D.A., Bernhardt, C.E., Brown, R., Landacre, B., Townsend, P., (2010). Development and application of a pollen-based paleohydrologic reconstruction from the lower Roanoke River Basin, North Carolina, USA. The Holocene 21, 2 305317.CrossRefGoogle Scholar
Williams, J.W., (2002). Variations in tree cover in North America since the Last Glacial Maximum. Global and Planetary Change 35, 123.CrossRefGoogle Scholar
Williams, J.W., Post, D.M., Cwynar, L.C., Lotter, A.F., Levesque, A.J., (2002). Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 11 971974.2.0.CO;2>CrossRefGoogle Scholar
Williams, J.W., Shuman, B.N., Webb, T.I.I.I., Bartlein, P.J., Leduc, P.L., (2004). Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecological Monographs 74, 2 309334.CrossRefGoogle Scholar
Wysocki, D.A., Markewich, , Pavich, M.J., Litwin, R.J., Smoot, J.P., (2010). Looking for loess in all the wrong places: characteristics and geomorphic inferences of a late-Pleistocene (OIS 5a and 4) paleosol in silt-rich Coastal Plain deposits along the Potomac River in eastern VA. ASA-CSSA-SSSA Annual Meetings. 31 Oct-3 Nov. Long Beach, CA. ( Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *