Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-zvgck Total loading time: 0.425 Render date: 2021-06-18T13:11:56.749Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Trends and Challenges in Experimental Macromolecular Crystallography

Published online by Cambridge University Press:  17 March 2009

N. E. Chayen
Affiliation:
Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, SW7 2BZ, UK
T. J. Boggon
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
A. Cassetta
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
A. Deacon
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
T. Gleichmann
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
J. Habash
Affiliation:
Chemistry Department, University of Basle, Switzerland
S. J. Harrop
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
J. R. Helliwell
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
Y. P. Nieh
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
M. R. Peterson
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
J. Raftery
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
E. H. Snell
Affiliation:
Chemistry Department, University of Manchester, Manchester, M13 9PL, UK
A. Hädener
Affiliation:
Chemistry Department, University of Basle, Switzerland
A. C. Niemann
Affiliation:
Chemistry Department, University of Basle, Switzerland
D. P. Siddons
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, USA
V. Stojanoff
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, USA
A. W. Thompson
Affiliation:
EMBL, Avenue des Martyrs, Grenoble Cedex, France ESRF, BP220, Grenoble Cedex, France
T. Ursby
Affiliation:
ESRF, BP220, Grenoble Cedex, France
M. Wulff
Affiliation:
ESRF, BP220, Grenoble Cedex, France

Extract

Macromolecular X-ray crystallography underpins the vigorous field of structural molecular biology having yielded many protein, nucleic acid and virus structures in fine detail. The understanding of the recognition by these macromolecules, as receptors, of their cognate ligands involves the detailed study of the structural chemistry of their molecular interactions. Also these structural details underpin the rational design of novel inhibitors in modern drug discovery in the pharmaceutical industry. Moreover, from such structures the functional details can be inferred, such as the biological chemistry of enzyme reactivity. There is then a vast number and range of types of biological macromolecules that potentially could be studied. The completion of the protein primary sequencing of the yeast genome, and the human genome sequencing project comprising some 105 proteins that is underway, raises expectations for equivalent three dimensional structural databases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

Abergel, C., Nesa, M. P. & Fontecilla-Camps, J. C. (1991). The effect of protein contaminants on the crystallisation of turkey egg white lysozyme. J. Cryst. Growth 110, 1119.CrossRefGoogle Scholar
Allinson, N. M. (1994). Development of non-intensified charge-coupled device area X-ray detectors. J. Synchrotron Rad. 1, 5462.CrossRefGoogle ScholarPubMed
Andersson, I. A., Clifton, I. J., Fulop, V. & Hajdu, J. (1991). High speed, high resolution data collection on spinach rubisco using a Weissenberg camera at the Photon Factory. In Crystallographic Computing. Edited by Moras, D., Podjarny, A. D. & Thierry, J. C.Oxford University Press, p.2028.Google Scholar
Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., Helliwell, J. R. & Harding, M. M. (1988). Piperazine Silicate (EU-19)–The structure of a very small crystal determined with synchrotron radiation. Acta. Cryst. B 44, 7377.CrossRefGoogle Scholar
Ataka, M. (1993). Protein crystal growth: an approach based on phase diagram determination. Phase Transitions 45, 205219.CrossRefGoogle Scholar
Ataka, M. & Asai, M. (1988). Systematic studies on the crystallisation of lysozyme. Determination and use of phase diagrams. J. Cryst. Growth 90, 8693.CrossRefGoogle Scholar
Ataka, M. & Tanaka, S. (1986). The growth of large single crystals of lysozyme. Biopolymers 25, 337350.CrossRefGoogle ScholarPubMed
Baldock, P., Mills, V. & Shaw Stewart, P. D. (1996). Increasing the number of crystallisation conditions by using microbatch screening. Proceedings of the Sixth International Conference on Crystallisation of Biological Macromolecules. J. Crystal Growth, in press.Google Scholar
Bartunik, H. D., Bartsch, H. H. & Quichen, H. (1992). Accuracy in Laue X-ray diffraction analysis of protein structure. Acta Cryst. A 48, 180188.CrossRefGoogle Scholar
Bernard, Y., Degoy, S., Lefaucheux, F. & Robert, M. C. (1994). A gel-mediated feeding technique for protein crystal growth from hanging drops. Acta Cryst. D 50, 504507.Google ScholarPubMed
Berriman, J. & Unwin, N. (1994). Analysis of transient structures by cryo-microscopy combined with rapid measuring of spray droplets. Ultramicroscopy 56, 241252.CrossRefGoogle Scholar
Bilderback, D. H., Thiel, D. J., Pahl, R. & Brister, K. E. (1994). X-ray applications with glass capillary optics. J. Synchrotron Rad. 1, 3742.CrossRefGoogle ScholarPubMed
Biou, V., Claustre, L., Felisaz, F., Thompson, A. W., Gonzalez, A., Helliwell, J. R., Smith, J. L., Hammersley, A. & Thorander, P. (1996). The development of MAD protein crystallography at the ESRF. Acta Cryst A supl., in press.Google Scholar
Blow, D. M., Chayen, N. E., Lloyd, L. F. & Saridakis, E. (1994). Control of nucleation of protein crystals. Protein Science 3, 16381643.CrossRefGoogle ScholarPubMed
Blow, D. M., Shaw Stewart, P. D. & Maeder, D. (1993). UK patent GB 2 249 492 B on ‘Crystallisation of Materials’; filed 13/12/89, published 13/10/93.Google Scholar
Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography. Academic Press.Google Scholar
Bolduc, J. M., Dyer, D. H., Scott, W. G., Singer, P., Sweet, R. M., Koshland, D. E. & Stoddard, B. L. (1995). Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science 268, 13121318.CrossRefGoogle ScholarPubMed
Bosch, R., Lautenschlager, P., Potthast, L. & Stapelmann, J. (1992). Experimental equipment for protein crystallisation in microgravity facilities. J. Cryst. Growth 122, 310316.CrossRefGoogle Scholar
Bourgeois, D., Ursby, T., Wulff, M., Pradervand, C., Legrand, A., Schildkamp, W., Labouré, S., Srajer, V., Teng, T. Y., Roth, M. & Moffat, K. (1996). Feasibility and realisation of single-pulse Laue diffraction on macromolecular crystals at ESRF. J. Synchrotron Rad. 3, 6574.CrossRefGoogle Scholar
Bradbrook, G., Deacon, A., Habash, J., Helliwell, J. R., Helliwell, M., Nieh, Y. P., Snell, E. H., Trapani, S., Thompson, A. W., Campbell, J. W., Allinson, N. M., Moon, K., Ursby, T. & Wulff, M. (1995). Time-resolved biological and perturbation chemical crystallography: Laue and monochromatic developments.Invited paper for the Proceedings 2521 of the SPIERöntgen Centennial Meeting, San Diego.Google Scholar
Brammer, R. C., Helliwell, J. R., Lamb, W., Liljas, A., Moore, P. R., Thompson, A. W. & Rathbone, K. (1988). A new protein crystallography station on the SRS Wiggler beamline for very rapid Laue and rapidly tunable monochromatic experiments: I. Design Principles, Ray Tracing and Heat calculations. Nucl. Instrum. & Methods A 271, 678687.CrossRefGoogle Scholar
Brzozowski, A. M. & Tolley, S. P. (1994). Poly(ethylene) glycol monomethyl ethers – an alternative to poly(ethylene) glycols in protein crystallisation. Acta Cryst. D 50, 466468.Google Scholar
Burning, J. H., Herriot, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D. & Brangaccio, D. J. (1974). Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693.CrossRefGoogle Scholar
Campbell, J. W., Deacon, A., Habash, J., Helliwell, J. R., McSweeney, S., Hao, Q., Raftery, J. & Snell, E. (1994). Electron density maps of lysozyme calculated using synchrotron Laue data comprising singles and deconvoluted multiples. Bull, of Mater. Sci. 17, 118.CrossRefGoogle Scholar
Carter, C. W. Jr. (1990). Efficient factorial designs and the analysis of macromolecular crystal growth conditions. Methods: a companion to Methods in Enzymology. 1, 1224.CrossRefGoogle Scholar
Carter, C. W. Jr. (1992). Design of crystallisation experiments and protocols. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R., pp 4771. IRL Press at Oxford University Press.Google Scholar
Carter, C. W. Jr. & Carter, C. W. (1979). Protein crystallisation using incomplete factorial experiments. J. Biol. Chem. 254, 1221912223.Google Scholar
Casay, G. A. & Wilson, W. W. (1992). Laser scattering in a hanging drop vapour diffusion apparatus for protein crystal growth in a microgravity environment. J. Cryst. Growth 122, 95101.CrossRefGoogle Scholar
Cassetta, A., Deacon, A., Emmerich, C., Habash, J., Helliwell, J. R., McSweeney, S., Snell, E. H., Thompson, A. W. & Weisgerber, S. (1993). The emergence of the synchrotron Laue method for rapid data collection from protein crystals. Proc. Roy. Soc. Lond. 442, 177192.CrossRefGoogle Scholar
Chayen, N. E. (1995). Microgravity protein crystallisation aboard the Photon satellite. J. Cryst. Growth 153, 175179.CrossRefGoogle Scholar
Chayen, N. E. (1996). A novel technique for containerless protein crystallisation. Protein Engineering, in press.CrossRefGoogle Scholar
Chayen, N. E., Akins, J., Campbell-Smith, S. & Blow, D. M. (1988). Solubility of glucose isomerase in ammonium sulphate solutions. J. Cryst. Growth 90, 112116.CrossRefGoogle Scholar
Chayen, N. E., Lloyd, L., Collyer, C. A. & Blow, D. M. (1989). Trigonal glucose isomerase crystals require thymol for their growth and stability. J. Cryst. Growth 97, 367374.CrossRefGoogle Scholar
Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. (1990). An automated system for microbatch protein crystallisation and screening. J. Appl. Cryst. 23, 297302.CrossRefGoogle Scholar
Chayen, N. E., Shaw Stewart, P. D. & Blow, D. M. (1992). Microbatch crys tallisation under oil – a new technique allowing many small-volume crystallisation trials. J. Cryst. Growth 122, 176180.CrossRefGoogle Scholar
Chayen, N. E., Radcliffe, J. & Blow, D. M. (1993). Control of nucleation in the crystallisation of lysozyme. Protein Science 2, 113118.CrossRefGoogle Scholar
Chayen, N. E., Shaw Stewart, P. D. & Baldock, P. (1994). New developments of the IMPAX small-volume crystallisation system. Acta Cryst. D 50, 456458.Google Scholar
Chayen, N. E., Gordon, E. J., Phillips, S. E. V., Saridakis, E. E. G. & Zagalsky, P. F. (1996 a). Crystallisation and initial X-ray analysis of β-crustacyanin, the dimer of apoproteins A2 and C1 each with a bound astaxanthin molecule. Acta Cryst. D 52, 409410.Google Scholar
Chayen, N. E., Gordon, E. J. & Zagalsky, P. F. (1996 b). The crystallisation of apocrustacyanin C1 on the International Microgravity Laboratory (IML-2) Mission. Acta Cryst. D 52, 156159.Google Scholar
Chayen, N. E., Snell, E. H., Helliwell, J. R. & Zagalsky, P. F. (1996 c). CCD video observation of microgravity protein crystallisation: apocrustacyanin C1. J. Cryst. Growth, in press.Google Scholar
Chernov, A. A., Rashkovich, L. N., Smol'skii, I. L., Kuznetsov, Y. G., Mkrtchyan, A. A. & Malkin, A. I. (1988). Growth of KDP crystals from solution. In Growth of Crystals. Editors: Givargizov, E. I. & Grinberg, S. A. Vol. 15, pp 4391. Consultants Bureau, NY, London.CrossRefGoogle Scholar
Cowtan, K. D. & Main, P. (1993). Improvement of macromolecular electron density maps by the simultaneous application of real and reciprocal space constraints. Acta Cryst. D 49, 148157.Google ScholarPubMed
Cox, M. J. & Weber, P. C. (1987). Experiments with automated protein crystallisation. J. Appl. Cryst. 20, 366373.CrossRefGoogle Scholar
Cruickshank, D. W. J., Helliwell, J. R. & Moffat, K. (1987). Multiplicity Distribution of Reflections in Laue Diffraction. Acta. Cryst. A 43, 656674.CrossRefGoogle Scholar
Cruickshank, D. W. J., Helliwell, J. R. & Moffat, K. (1991). Angular distribution of reflections in Laue diffraction. Acta Cryst. A 47, 352373.CrossRefGoogle Scholar
Cruickshank, D. W. J., Helliwell, J. R. & Johnson, L. N. (1992). Time-resolved macromolecular crystallography. The Royal Society and Oxford University Press.Google Scholar
Cudney, R., Patel, S., Weisgraber, K., Newhouse, Y. & McPherson, A. (1994 a). Screening and optimization strategies for macromolecular crystal growth. Acta Cryst. D 50, 414423.Google ScholarPubMed
Cudney, B., Patel, S. & McPherson, A. (1994 b). Crystallisation of macromolecules in silica gels. Acta Cryst. D 50, 479483.Google Scholar
D'arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). A novel approach to crystallising proteins under oil. Proceedings of the Sixth International Conference on Crystallisation of Biological Macromolecules. J. Cryst. Growth, in press.CrossRefGoogle Scholar
Darwin, C. G. (1922). The reflection of X-rays from imperfect crystals. Phil. Mag. 43, 800829.CrossRefGoogle Scholar
Deacon, A., Habash, J., Harrop, S. J., Helliwell, J. R., Hunter, W. N., Leonard, G. A., Peterson, M., Haedener, A., Kalb (Gilboa), A. J., Allinson, N. M., Castelli, C., Moon, K., McSweeney, S., Gonzalez, A., Thompson, A. W., Ealick, S., Szebenyi, D. M. & Walter, R. (1995 a). SR instrumentation for optimised anomalous scattering and high resolution structure studies of proteins and nucleic acids. Rev. Sci. Instrum. 66(2), 12871292.CrossRefGoogle Scholar
Deacon, A., Gleichmann, T., Harrop, S. J., Helliwell, J. R. & Kalb(Gilboa), A. J. (1995 b). Ultra-high resolution protein crystallography. CHESS Newsletter 1112.Google Scholar
DeLucas, L. J., Long, M. M., Moore, K. M., Rosenblum, W. M., Bray, T. L., Smith, C., Carson, M., Narayana, S. V. L., Harrington, M. D., Carter, D., Clark, A. D. Jr., Nanni, R. G., Ding, J., Jacobo-Molina, A., Kamer, G., Hughes, S. H., Arnold, E., Einspahr, H. M., Clancy, L. L., Rao, G. S. J., Cook, P. F., Harris, B. G., Munson, S. H., Finzel, B. C., McPherson, A., Weber, P. C., Lewandowski, F. A., Nagabhushan, T. L., Trotta, P. P., Reichert, P., Navia, M. A., Wilson, K. P., Thompson, J. A., Richards, R. N., Bowersox, K. D., Meade, C. J., Baker, E. S., Bishop, S. P., Dunbar, B. J., Trinh, E., Prahl, J., Sacco, A. Jr., & Bugg, C. E. (1994). Recent results and new hardware developments for protein crystal growth in microgravity. J. Cryst. Growth 135, 183192.CrossRefGoogle Scholar
DeMattei, R. C. & Feigelson, R. S. (1991). The solubility dependence of canavalin on pH and temperature. J. Cryst. Growth, 110, 3440.CrossRefGoogle Scholar
Dewan, J. C. & Tilton, R. F. (1987). Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibres. J. Appl. Cryst. 20, 130132.CrossRefGoogle Scholar
Drew, H. R., Samson, S. & Dickerson, R. E. (1982). Structure of a B-DNA dodecamer at 16 K. Proc. Natl. Acad. Sci. USA 79, 40404044.CrossRefGoogle ScholarPubMed
Ducruix, A. & Giege, R. (1992). Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R.IRL Press at Oxford University Press.Google Scholar
Ealick, S. & Walter, R. (1993). Synchrotron beamlines for macromolecular crystallography. Current Opinion in Structural Biology 3, 725736.CrossRefGoogle Scholar
Engel, C., Wierenga, R. & Tucker, P. A. (1996). A removable arc for mounting and recovering flash-cooled crystals. J. Appl Crystallogr. 29, 208210.CrossRefGoogle Scholar
Ewing, F., Forsythe, E., & Pusey, M. (1994). Orthorhombic lysozyme solubility. Acta. Cryst. D 50, 424428.Google ScholarPubMed
Feigelson, R. S. & DeMattei, R. C. (1992). Controlling nucleation in protein solutions. J. Cryst. Growth 122, 2130.Google Scholar
Fourme, R., Ducruix, A., Riess-Kautt, M. & Capelle, B. (1995). The perfection of protein crystals probed by direct recording of Bragg reflection profiles with a quasiplanar X-ray wave. J. Synchrotron Rad. 2, 136142.CrossRefGoogle Scholar
Gamblin, S. J. & Rodgers, D. W. (1993). Some practical details on data collection at 100 K in Data collection and Processing. Proceedings of the Daresbury CCP4 study weekend. 2832. Compiled by Sawyer, L., Isaacs, N. & Bailey, S.Google Scholar
Garcia-Ruiz, J. M. & Moreno, A. (1994). Investigations on protein crystal growth by the gel acupuncture method. Acta Cryst. D 50, 484490.Google ScholarPubMed
Gilliland, G. L., Tung, M., Blakeslee, D. M. & Ladner, J. E. (1994). Biological macromolecule crystallisation database, version 3.0: New features, data and the NASA archive for protein crystal growth data. Acta Cryst. D 50, 408413.Google Scholar
Gonzalez, A., Denny, R. & Nave, C. (1994). Data collection at short wavelengths in protein crystallography. Acta Cryst. D 50, 276282.Google ScholarPubMed
Greenhough, T. J. & Helliwell, J. R. (1982). Oscillation camera data processing; Reflecting range and prediction of partiality I. Conventional X-ray sources. J. Appl. Cryst. 15, 338351.CrossRefGoogle Scholar
Gruner, S. & Ealick, S. (1995). Charge coupled device X-ray detectors for macromolecular crystallography. Structure 3, 1315.CrossRefGoogle ScholarPubMed
Hadfield, A. & Hajdu, J. (1993). A fast and portable microspectrophotometer for protein crystallography. J. Appl. Cryst. 26, 839842.CrossRefGoogle Scholar
Hädener, A., Matzinger, P. K., Malashkevich, V. N., Louie, G. V., Wood, S. P., Oliver, P., Alefounder, P. R., Pitt, A. R., Abell, C. & Battersby, A. R. (1993). Purification, characterisation, crystallisation and X-ray analysis of selenomethioninelabelled hydroxymethylbilane synthase from Escherichia coli. Eur. J. Biochem. 211, 615624.CrossRefGoogle Scholar
Hädener, A., Matzinger, P. K., Battersby, A. R., McSweeney, S., Thompson, A. W., Harrop, S. J., Cassetta, A., Deacon, A., Hunter, W. N., Peterson, M. & Helliwell, J. R. (1996). Determination of the structure of selenomethionine-labelled hydroxymethyl bilane synthase in its active form by multi-wavelength anomalous dispersion. Chemistry and Biology, in preparation.Google Scholar
Hajdu, J. & Andersson, I. (1993). Fast X-ray crystallography and time-resolved structures. Annu. Rev. Biophys. Biomol. Struct. 22, 467498.CrossRefGoogle ScholarPubMed
Hajdu, J., Machin, P. A., Campbell, J. W., Greenhough, T. J., Clifton, I. J., Zurek, S., Gover, S., Johnson, L. N. & Elder, M. (1987). Millisecond X-ray diffraction: first electron density map from Laue photographs of a protein crystal. Nature 329, 178181.CrossRefGoogle ScholarPubMed
Hall, G. (1995). Silicon pixel detectors for X-ray diffraction studies with synchrotron radiation. Quarterly Reviews of Biophysics 28(1), 1.CrossRefGoogle Scholar
Hedman, B., Hodgson, K. O., Helliwell, J. R., Liddington, R. & Papiz, M. Z. (1985). Protein micro-crystal diffraction and the effects of radiation damage with ultra high flux synchrotron radiation. PNAS.USA 82, 76047607.CrossRefGoogle Scholar
Helliwell, J. R. (1979). Optimisation of anomalous scattering and structural studies of proteins using synchrotron radiation. In Daresbury Study Weekend Proceedings DL/SCI.R13, p.16.Google Scholar
Helliwell, J. R. (1982). The use of electronic area detectors for synchrotron X-radiation protein crystallography with particular reference to the Daresbury SRS. Nucl. Instrum. & Meths. 201, 153174.CrossRefGoogle Scholar
Helliwell, J. R. (1984). Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Reports on Progress in Physics 47, 14031497.Google Scholar
Helliwell, J. R. (1985). Protein Crystallography with Synchrotron Radiation. J. Molec. Struct. 130, 6391.CrossRefGoogle Scholar
Helliwell, J. R. (1987). Instruments for macromolecular crystallography at the ESRF. Published in the ESRF Red Book.Google Scholar
Helliwell, J. R. (1988). Protein crystal perfection and the nature of radiation damage. J. Cryst. Growth 90, 259272.CrossRefGoogle Scholar
Helliwell, J. R. (1992 a). Macromolecular Crystallography with Synchrotron Radiation. Cambridge University Press.Google Scholar
Helliwell, J. R. (1992 b). Synchrotron X-ray crystallography techniques: Timeresolved aspects of data collection. Phil. Trans. Roy. Soc. Lond. A 340, 221232.CrossRefGoogle Scholar
Helliwell, J. R. (1993). The choice of X-ray wavelength in macromolecular crystallography. Proceedings of the SERC Daresbury Study Weekend. D1/SCI/R34. Compiled by Sawyer, L., Isaacs, N., & Bailey, S., pp. 8088.Google Scholar
Helliwell, J. R. & Fourme, R. (1983). The ESRF as a facility for protein crystallography: A report and design study. ESRP Report IRI-4/83, CERN, Geneva, pp. 136.Google Scholar
Helliwell, J. R. & Helliwell, M. (1996). X-ray crystallography in structural chemistry and molecular biology. Feature Article, Chem. Comm., No. 14, 15951602.CrossRefGoogle Scholar
Helliwell, J. R., Greenhough, T. J., Carr, P., Rule, S. A., Moore, P. R., Thompson, A. W. & Worgan, J. S. (1982). Central data collection facility for protein crystallography, small angle diffraction and scattering at the Daresbury SRS. J. Phys. E. 15. 13631372.CrossRefGoogle Scholar
Helliwell, J. R., Papiz, M. Z., Glover, I. D., Habash, J., Thompson, A. W., Moore, P. R., Harris, N., Croft, D. & Pantos, E. (1986). The Wiggler Protein Crystallography Workstation at the Daresbury SRS; Progress and Results. Nucl. Instrum. & Meths. A246, 617623.CrossRefGoogle Scholar
Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., Campbell, J. W., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989). The recording and analysis of Laue diffraction photographs. J. Appl. Cryst. 22, 483497.CrossRefGoogle Scholar
Helliwell, J. R., Snell, E. H. & Weisgerber, S. (1995). An investigation of the perfection of lysozyme protein crysals grown in microgravity (Spacehab-1 and IML-2) and on earth. Pages 155170 in Proceedings of the Berlin Conference on Microgravity Research. Springer Verlag Lecture Notes in Physics. Edited by Ratke, L., Walter, H. & Feuerbacher, B.Google Scholar
Henderson, R. (1990). Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc. R. Soc. Lond. B 241, 68.CrossRefGoogle Scholar
Hendrickson, W. (1985). Analysis of protein structure from diffraction measurements at multiple wavelengths. Trans. Americ. Cryst. Assoc. 21, 1121.Google Scholar
Hendrickson, W. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 5158.CrossRefGoogle ScholarPubMed
Hirschler, J., Charon, M. H. & Fontecilla-Camps, J. C. (1995). The effects of filtration on protein nucleation in different growth media. Protein Science 4, 25732577.Google Scholar
Hope, H. (1988). Cryo-crystallography of biological macromolecules: a generally applicable method. Acta Cryst. B 44, 2226.CrossRefGoogle Scholar
Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperature. Annu. Rev. Biophys., Biophys. Chem. 19, 107126.CrossRefGoogle ScholarPubMed
Hope, H. (1996). Personal communication.Google Scholar
Hoppe, W. & Jakubowski, U. (1975). The determination of phases of erythrocruorin using the two-wavelength method with iron as anomalous scatterer. In Anomalous Scattering. Edited by Ramaseshan, S. & Abrahams, S. C., Copenhagen: Munksgaard, PP. 437461.Google Scholar
Howard, S. B., Twigg, P. J., Baird, K. & Meehan, E. J. (1988). The solubility of hen egg white lysozyme. J. Cryst. Growth, 90, 94104.CrossRefGoogle Scholar
Jancarik, J. & Kim, S. H. (1991). Sparse matrix sampling: a screening method for crystallisation of proteins. J. Appl. Cryst. 24, 409411.CrossRefGoogle Scholar
Karle, J. (1967). Anomalous scattering in X-ray diffraction and use of several wavelengths. Appl. Opt. 6, 21322135.CrossRefGoogle ScholarPubMed
Karle, J. (1980). Some developments in anomalous dispersion for the structural investigation of macromolecular systems in Biology. Int. J. Quantum Chem. Quantum Biol. Symp. 1, 357367.Google Scholar
Kingston, R. L., Baker, H. M. & Baker, E. N. (1994). Search designs for protein crystallisation based on orthogonal arrays. Acta Cryst. D 50, 429440.CrossRefGoogle Scholar
Komatsu, H., Miyashita, S. & Suzuki, Y. (1993). Interferometric observation of the interfacial concentration gradient layers around a lysozyme crystal, Jpn. J. Appl. Phys. 32 Pt.2, 18551857.CrossRefGoogle Scholar
Korkhin, Y. M., Evdokimov, A. & Shaw Stewart, P. D. (1995). Crystallisation of a protein by microseeding after establishing its phase diagram. Application note 1, Douglas Instruments.Google Scholar
Koszelak, S., Martin, D., NG, J. & McPherson, A. (1991). Protein crystal growth rates determined by time lapse microphotography J. Cryst. Growth 110, 177181.CrossRefGoogle Scholar
Koszelak, S., Day, J., Leja, C., Cudney, R. & McPherson, A. (1995). Protein and virus crystal growth on International Microgravity Laboratory-2. Biophys. J. 69, 1319.CrossRefGoogle ScholarPubMed
Kuznetsov, Y. G., Malkin, A. J., Greenwood, A. & McPherson, A. (1995). Interferometric studies of growth kinetics and surface morphology in macromolecular crystal growth: Canavalin, thaumatin and turnip yellow mosaic virus. J. Structural Biology 114, 184196.CrossRefGoogle Scholar
Kuznetsov, Y. G., Malkin, A. J., Glantz, W. & McPherson, A. (1996). In situ atomic force microscopy studies of protein and virus crystal growth mechanisms. J. Cryst. Growth, in press.CrossRefGoogle Scholar
Land, T. A., Malkin, A. J., Kuznetsov, Y. G., McPherson, A. & DeYoreo, J. J. (1995). Mechanisms of protein crystal growth: An atomic force microscopy study of canavalin crystallization. Physical Review Letters Vol. 75, No. 14, 27742777.CrossRefGoogle ScholarPubMed
Lewis, R. A. (1994). Multiwire gas proportional counters: decrepit antiques or classic performers? J. Synchrotron Rad. 1, 4353.CrossRefGoogle ScholarPubMed
Lindahl, M., Liljas, A., Habash, J., Harrop, S. J. & Helliwell, J. R. (1992). The sensitivity of the Laue method to small structural changes: binding studies of human carbonic anhydrase II (HCA II). Acta Cryst. B48, 281285.CrossRefGoogle Scholar
Long, M. M., Bishop, J. B., Nagabhushan, T. L., Reichert, P., Smith, G. D. & DeLucas, L. J. (1995). Protein crystal growth in microgravity. Review of large scale temperature induction method: bovine insulin, human insulin and human alpha interferon. Sixth International Conference on Crystallisation of Biological Macromolecules, Hiroshima, Japan. J. Cryst. Growth, in press.Google Scholar
Lorber, B. & Giegé, R. (1996). Containerless protein crystallization in floating drops: application to crystal growth monitoring under reduced nucleation conditions. Proceedings of the Sixth International Conference on Crystallisation of Biological Macromolecules. J. Crystal Growth, in press.Google Scholar
Lorber, B., Skouri, M., Munch, J. P. & Giegé, R. (1993). The influence of impurities on protein crystallisation; the case of lysozyme. J. Cryst. Growth 128, 12031211.CrossRefGoogle Scholar
Lorber, B., Jenner, G. & Giegé, R. (1996). Effect of high hydrostatic pressure on nucleation and growth of protein crystals. J. Cryst. Growth 158, 103117.CrossRefGoogle Scholar
Low, B. M., Chen, C. C., Berger, J. E., Singmann, L. & Pletcher, J. F. (1966). Studies of insulin crystals at low temperatures: effects on mosaic character and radiation sensitivity. Proc. Natl. Acad. Sci. USA 56, 17461750.CrossRefGoogle ScholarPubMed
Malkin, A. J., Cheung, J. & McPherson, A. (1993). Crystallisation of satellite tobacco mosaic virus 1. nucleation phenomena. J. Cryst. Growth 126, 544554.CrossRefGoogle Scholar
Malkin, A. J., Kuznetsov, Y. G., Land, T. A., Deyoreo, J. J. & McPherson, A. (1995). Mechanisms of growth for protein and virus crystals. Nature Structural Biology 2, 956959.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., & McPherson, A. (1996). Incorporation of microcrystals by growing protein and virus crystals. Proteins Structure Function & Genetics 24, no. 2, 247252.Google Scholar
McPherson, A. (1982). Preparation and analysis of protein crystals. John Wiley, New York.Google Scholar
McPherson, A. (1992). Two approaches to the rapid screening of crystallisation conditons. J. Cryst. Growth 122, 161167.CrossRefGoogle Scholar
McPherson, A. (1993). Virus and protein crystal growth on earth and in microgravity. J. Phys. D. Appl. Phys. 26, B104B112.CrossRefGoogle Scholar
McPherson, A. (1995). Increasing the size of microcrystals by fine sampling of pH limits. J. Appl. Cryst. 28, 362365.CrossRefGoogle Scholar
McPherson, A. & Schlichta, P. (1988). Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239, 385387.CrossRefGoogle ScholarPubMed
McPherson, A., Malkin, A. J. & Kuznetsov, Y. G. (1995). The science of macromolecular crystallisation. Structure 3, 759768.CrossRefGoogle Scholar
Mikol, V. & Giegé, R. (1989). Phase diagram of a crystalline protein: determination of the solubility of concanavalin A by a microquantitation assay. J. Cryst. Growth 97, 324332.CrossRefGoogle Scholar
Mikol, V. & Giegé, R. (1992). The physical chemistry of protein crystallisation. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R., pp 219239. IRL Press at Oxford University Press.Google Scholar
Mikol, V., Hirsch, E. & Giege, R. (1989). Monitoring protein crystallisation by dynamic light scattering. FEBS Letters 258, 6366.CrossRefGoogle Scholar
Mitchell, E. P. & Garman, E. F. (1994). Flash freezing of protein crystals: investigation of mosaic spread and diffraction limit with variation of cryoprotectant concentration, J. Appl. Cryst. 27, 10701074.CrossRefGoogle Scholar
Miyashita, S., Komatsu, H., Suzuki, Y. & Nakada, T. (1994). Observation of the concentration distribution around a growing lysozyme crystal. J. Cryst. Growth 141, 419424.CrossRefGoogle Scholar
Moffat, K. & Henderson, (1995). Freeze trapping of reaction intermediates. Current Opinion in Structural Biology 5, 656663.CrossRefGoogle ScholarPubMed
Moffat, K., Szebenyi, D. M. & Bilderback, D. (1984). X-ray Laue diffraction from protein crystals. Science 223, 14231425.CrossRefGoogle ScholarPubMed
Molenkamp, T., Janssen, L. P. B. M. & Drenth, J. (1994). Protein crystallisation and Marangoni convection in Final Reports of Sounding Rocket Experiments in Fluid Science and Materials Sciences. European Space Agency SP-1132 Vol. 4, 2243.Google Scholar
Moon, K. J., Allinson, N. M. & Helliwell, J. R. (1994). High-speed acquisition system for Laue diffraction patterns. Nucl. Instrum. & Meths. A348, 631634.CrossRefGoogle Scholar
Niemann, A. C., Matzinger, P. K. & Haedener, A. (1994). A kinetic analysis of the reaction catalysed by (Hydroxymethyl) bilane synthase. Helvetica Chimica Acta 77, 17911809.CrossRefGoogle Scholar
Niimura, N., Minezaki, Y., Ataka, M. & Katsura, T. (1994). Small angle neutron scattering from lysozyme in unsaturated solutions, to characterise the precrystallisation process. J. Cryst. Growth 137, 671675.CrossRefGoogle Scholar
Niimura, N., Minezaki, Y., Ataka, M. & Katsura, T. (1995). Aggregation in supersaturated lysozyme solution studied by time-resolved small angle neutron scattering. J. Cryst. Growth 154, 136144.CrossRefGoogle Scholar
Normile, D. (1995). Search for better crystals explores inner, outer space. Science 270, 19211992.CrossRefGoogle ScholarPubMed
Odahara, T., Ataka, M. & Katsura, T. (1994). Phase diagram determination to elucidate the crystal growth of the photoreaction center from Rhodobacter sphaeroides. Acta Cryst. D 50, 639642.CrossRefGoogle ScholarPubMed
Okaya, Y. & Pepinsky, R. (1956). Determination of crystal structures by, means of anomalously scattered X-rays. Phys. Rev. 103, 16451647.CrossRefGoogle Scholar
Oldfield, T. J., Ceska, T. A. & Brady, R. L. (1991). A flexible approach to automated protein crystallisation. J. Appl. Cryst. 24, 255260.CrossRefGoogle Scholar
Onuma, K., Tsukamoto, T. & Nakadate, S. (1993). Application of real time phase shift interferometer to the measurement of concentration field. J. Cryst. Growth 129, 706718.CrossRefGoogle Scholar
Patel, S., Cudney, B. & McPherson, A. (1995). Polymeric precipitants for the crystallisation of macromolecules. Biochem. Biophys. Res. Commun. 207, 819828.CrossRefGoogle Scholar
Peterson, M. R., Harrop, S. J., McSweeney, S. M., Leonard, G. A., Thompson, A. W., Hunter, W. N. & Helliwell, J. R. (1996). MAD phasing strategies explored with a brominated oligonucleotide crystal at 1·65 Å resolution. J. Synchrotron Rad. 3, 2434.CrossRefGoogle Scholar
Petsko, G. A. (1975). Protein crystallography at sub-zero temperatures: cryo-protective mother liquors for protein crystals. J. Mol. Biol. 96, 381392.CrossRefGoogle ScholarPubMed
Petsko, G. A. (1992). Art is long and time is fleeting: the current problems and future prospects for time-resolved enzyme crystallography in Time-Resolved Macromolecular Crystallography. The Royal Society and Oxford University Press. Edited by Cruickshank, D. W. J., Helliwell, J. R. & Johnson, L. N.Google Scholar
Phillips, D. C. (1974). Personal Communication.Google Scholar
Provost, K. & Robert, M. C. (1995). Crystal growth of lysozymes in media contaminated by parent molecules: influence of gelled media. J. Cryst. Growth 156, 112120.CrossRefGoogle Scholar
Pryzbylska, M. (1989). A double cell for controlling nucleation and growth of protein crystals. J. Appl. Cryst. 22, 115118.CrossRefGoogle Scholar
Pusey, M. L. (1991). Estimation of the initial equlibrium constants in the formation of tetragonal lysozyme nuclei. J. Cryst. Growth, 110, 6065.CrossRefGoogle Scholar
Pusey, M. L. & Gernert, K. (1988). A method for rapid liquid-solid phase solubility measurements using the protein lysozyme. J. Cryst. Growth 88, 419424.CrossRefGoogle Scholar
Pusey, M. L. & Munson, S. (1991). Micro-apparatus for rapid determinations of protein solubilities. J. Cryst. Growth 113, 385389.CrossRefGoogle Scholar
Ren, Z. & Moffat, K. (1994). Laue crystallography for studying rapid reactions. J. Synchrotron Rad. 1, 7882.CrossRefGoogle ScholarPubMed
Ren, Z. & Moffat, K. (1995 a). Quantitative analysis of synchrotron Laue diffraction patterns in macromolecular crystallography. J. Appl. Cryst. 28, 461481.CrossRefGoogle Scholar
Ren, Z. & Moffat, K. (1995 b). Deconvolution of energy overlaps in Laue diffraction. J. Appl. Cryst. 28, 482493.CrossRefGoogle Scholar
Riess-Husson, F. (1992). Crystallisation of membrane proteins. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R., pp 175193. IRL Press at Oxford University Press.Google Scholar
Ries-Kautt, M. & Ducruix, A. (1992). Phase diagrams. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R., pp 195218. IRL Press at Oxford University Press.Google Scholar
Robert, M. C. & Lefaucheux, F. (1988). Crystal growth in gels: principles and applications. J. Cryst. Growth 90, 358367.CrossRefGoogle Scholar
Robert, M. C., Provost, K. & Lefaucheux, F. (1992). Crystallisation in gels and related methods. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. and Giegé, R., pp 127143. IRL Press at Oxford University Press.Google Scholar
Rodgers, D. (1994). Cryocrystallography. Structure, Vol 2. No. 12, 11351140.CrossRefGoogle ScholarPubMed
Rosenberger, (1996). Nucleation and crystallisation of globular proteins – what do we know and what is missing?. J. Cryst. Growth, in press.Google Scholar
Rosenberger, F., Howard, S. B., Sowers, J. W. & Nyce, T. A. (1993). Temperature dependence of protein solubility – determination and application to crystallisation in X-ray capillaries. J. Cryst. Growth 129, 112.CrossRefGoogle Scholar
Rubin, B., Talatous, J. & Larson, D. (1991). Minimal intervention robotic protein crystallisation. J. Cryst. Growth 110, 156163.CrossRefGoogle Scholar
Rupp, B., cHOPE, H. & Parkin, S. (1995). Atomic resolution cryocrystallography: BPTI and concanavalin A. Abstract MO44 ACA Meeting Montreal.Google Scholar
Sadaoui, N., Janin, J. & Lewit-Bently, A. (1994). TAOS: an automatic system for protein crystallisation. J. Appl. Cryst. 27, 622626.CrossRefGoogle Scholar
Sakabe, N., Sakabe, K. & Sasaki, K. (1981). Hydrogen atoms and hydrogen bonding in rhombohedral 2Zn insulin crystals by X-ray analysis at 1·2 Å resolution in Structural Studies on Molecules of Biological Interest. Volume in honour of Dorothy Hodgkin. Edited by Dodson, G. G., Glusker, J. P. & Sayre, D.Oxford University Press, 509526.Google Scholar
Sakabe, N. (1983). A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography. J. Appl. Cryst. 16, 542547.CrossRefGoogle Scholar
Sakabe, N. (1991). X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. Instrum. & Methods A303, 448463.CrossRefGoogle Scholar
Sakabe, N., Ikemizu, S., Sakabe, K., Higashi, T., Nakagawa, A., Watanabe, N., Adachi, S. & Sasaki, K. (1995). Weissenberg camera for macromolecules with imaging plate data collection system at the Photon Factory: Present status and future plan. Rev. Sci. Instrum. 66, 12761281.CrossRefGoogle Scholar
Saridakis, E. E. G., Shaw Stewart, P. D., Lloyd, L. F. & Blow, D. M. (1994). Phase diagram and dilution experiments in the crystallisation of carboxypeptidase G2. Acta Cryst. D 50, 293297.CrossRefGoogle Scholar
Savino, R. & Monti, R. (1996). Buoyancy and surface-tension-driven convection in hanging drop protein crystallization. J. Cryst Growth 165, 308318.CrossRefGoogle Scholar
Sazaki, G., Aoki, S., Ooshima, H. & Kato, J. (1994). Effect of self-degradation products on crystallisation of protease thermolysin. J. Cryst Growth 139, 95103.CrossRefGoogle Scholar
Sazaki, G., Yoshida, E., Nakada, T., Miyashita, S. & Komatsu, H. (1996). Novel approach to measure the solubility of protein by using Michelson interferometry. J. Crystal Growth, in press.Google Scholar
Scheidig, A. J., Sanchez-Llorente, A., Lautwein, A., Pai, E. F., Corrie, J. E. T., Reid, G. P., Wittinghofer, A. & Goody, R. S. (1994). Crystallographic studies on p21 (H-Ras) using the synchrotron Laue method – Improvement of crystal quality and monitoring of the GTPase reaction at different time points. Acta Cryst. D 50. 512520.CrossRefGoogle ScholarPubMed
Schlichta, P. J. (1986). Feasibility of mapping solution properties during the growth of protein crystals. J. Cryst. Growth 76, 656662.CrossRefGoogle Scholar
Schlichting, I., Almo, S. C., Rapp, G., Wilson, K. S., Petratos, A., Lentfer, A., Wittinghofer, A., Kabsch, W., Pai, E. F., Petsko, G. A. & Goody, R. S. (1990). Time-resolved X-ray crystallographic study of the conformational changes in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309315.CrossRefGoogle ScholarPubMed
Schneider, T. R., Wilson, K. S. & Parak, F. (1995). Dynamic behaviour of a serine proteinase from anisotropic temperature factors. Abstract MO70 of the ACA Montreal Meeting.Google Scholar
Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A. W., Lehmann, M. S., Grubel, G., Legrand, J–F., Als-Nielsen, J., Colman, D. R. and Hendrickson, W. A. (1995). Structural basis of cell-cell adhesion by cadherins. Nature 374, 327337.CrossRefGoogle ScholarPubMed
Shaw Stewart, P. D. & Kahmisa, M. (1994). Predispensed gradient matrices – a new rapid method of finding crystallisation conditions. Acta Cryst. D 50, 441442.CrossRefGoogle Scholar
Sheldrick, G., Dauter, Z., Wilson, K. S., Hope, H. and Sieker, L. (1994). The application of direct methods and Patterson interpretation to high resolution native protein data. Acta Cryst. D 49, 1823.CrossRefGoogle Scholar
Sica, F., Demasi, D., Mazzarella, L., Zagari, A., Capasso, S., Pearl, L. H., D'Auria, S., Raia, C. A. & Rossi, M. (1994). Elimination of twinning in crystals of Sulfolobus solfataricus alcohol dehydrogenase holo-enzyme by growth in agarose gels. Acta Cryst. D 50, 508511.CrossRefGoogle ScholarPubMed
Singer, P. T., Smalas, A., Carty, R. P., Mangel, W. F. & Sweet, R. M. (1993). The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science 259, 669673.CrossRefGoogle ScholarPubMed
Snell, E. H., Weisgerber, S., Helliwell, J. R., Weckert, E., Holzer, K. & Schroer, K. (1995). Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Cryst. D 51, 10991102.CrossRefGoogle ScholarPubMed
Snell, E. H., Helliwell, J. R., Boggon, T. J., Lautenschlager, P. & Potthast, L., (1996). First ground trials of a Mach-Zehnder interferometer for implementation into a microgravity protein crystallization facility–the APCF. Acta Cryst. D 52, 529533.CrossRefGoogle Scholar
Snyder, R. S., Fuhrmann, K. and Walter, H. U. (1991). Protein crystallisation facilities for microgravity experiments. J. Cryst. Growth 110, 333338.CrossRefGoogle Scholar
Soriano, T. M. & Fontecilla-Camps, J. C. (1993). ASTEC: an automated system for sitting drop protein crystallisation. J. Appl. Cryst. 26, 558562.CrossRefGoogle Scholar
Stoddard, B. L. & Farber, G. K. (1995). Direct measurement of reactivity in the protein crystal by steady-state kinetic-studies. Structure 3, 991996.CrossRefGoogle ScholarPubMed
Stojanoff, V., Snell, E. H., Siddons, D. P. & Helliwell, J. R. (1996). An old technique with a new application: X-ray topography of protein crystals. Synchrotron Radiation News 9, No. 1, 2526.Google Scholar
Strong, R. K., Stoddard, B., Arrott, A. & Farber, G. K. (1992). Long duration growth of protein crystals in microgravity aboard the MIR space station. J. Cryst. Growth 119, 200214.CrossRefGoogle Scholar
Stura, E. A. & Wilson, I. A. (1990). Analytical and production seeding techniques. Methods: a companion to Methods in Enzymology. 1, 3849.CrossRefGoogle Scholar
Stura, E. A. & Wilson, I. A. (1992). Seeding techniques. In Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edited by Ducruix, A. & Giegé, R., pp 99126. IRL Press at Oxford University Press.Google Scholar
Stura, E. A., Satterthwait, A. C., Calvo, J. C., Kaslow, D. C. and Wilson, I. A. (1994). Reverse screening. Acta Cryst. D 50, 448455.CrossRefGoogle ScholarPubMed
Subramaniam, S., Gerstein, M., Oesterhelt, D. & Henderson, R. (1993). Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO. J. 12, 18.Google ScholarPubMed
Suortti, P. & Schulze, C. (1995). Fixed exit monochromators for high energy synchrotron radiation. J. Synchrotron Rad. 2, 612.CrossRefGoogle ScholarPubMed
Suzuki, Y., Miyashita, S., Komatsu, H., Sato, K. & Yagi, T. (1994). Crystal growth of hen egg white lysozyme under high pressure. Jpn. J. Appl. Phys. 33, L 1568L 1570.CrossRefGoogle Scholar
Teeter, M. M. & Hope, H. (1986). The structure of the protein crambin from X-ray diffraction at 140 K. Ann NY Acad. Sci. 482, 163165.CrossRefGoogle Scholar
Teng, T. Y. (1990). Mounting of crystals for macromolecular crystallography in a freestanding thin film. J. Appl. Cryst. 23, 387391.CrossRefGoogle Scholar
Thiessen, K. J. (1994). The use of two novel methods to grow protein crystals by microdialysis and vapour diffusion in an agarose gel. Acta Cryst. D 50, 491492.CrossRefGoogle Scholar
Thompson, A. W., Habash, J., Harrop, S. J., Helliwell, J. R., Nave, C., Atkinson, P., Hasnain, S. S., Glover, I. D., Moore, P. R., Harris, N., Kinder, S. & Buffey, S. (1992). A new macromolecular crystallography station (9.5) on the SRS Wiggler beam line for very rapid Laue and rapidly tunable monochromatic measurements: commissioning and first results. Rev. Sci. Instrum. 63(1), 10621064.CrossRefGoogle Scholar
Thompson, A. W. (1994). ESRF Beamline Handbook.Google Scholar
Vekilov, P. G., Ataka, M. & Katsura, T. (1995). Growth process of protein crystals revealed by laser Michelson interferometry investigation. Acta Cryst. D 51, 207219.CrossRefGoogle ScholarPubMed
Walter, H. U., ED. (1987). Fluid Sciences and Materials Science in Space. Springer Verlag.CrossRefGoogle Scholar
Walter, J., Steigemann, W., Singh, T. P., Bartunik, H., Bode, W. & Huber, R. (1982). On the disordered activation domain in trypsinogen: chemical labelling and low temperature crystallography. Acta Cryst. B 38, 14621472.CrossRefGoogle Scholar
Ward, K. B., Perozzo, M. A. & Zuk, W. M. (1988). Automatic preparation of protein crystals using laboratory robotics and automatic visual inspection. J. Cryst. Growth 9O, 325339.CrossRefGoogle Scholar
Watenpaugh, K. D. (1991). Macromolecular crystallography at cryogenic temperatures. Curr. Opin. Strud. Biol. 1, 10121015.CrossRefGoogle Scholar
Weber, P. C. (1990). A protein crystallisation strategy using automated grid searches on successively finer grids. Methods: a companion to Methods in Enzymology. 1, 3137.CrossRefGoogle Scholar
Weisgerber, S. & Helliwell, J. R. (1993). High resolution crystallographic studies of native concanavalin A using rapid Laue data collection methods and the introduction of a monochromatic large-angle oscillation technique (LOT). Faraday Transadions, 89 (15), 26672675.CrossRefGoogle Scholar
Westbrook, E. M. (1988). Conceptual Design Report Document No, J9001–2001.SA-01, Argonne National Laboratory.Google Scholar
Wilkinson, C. & Lehmann, M. (1991). Quasi-Laue neutron diffractometer. Nucl. Instrum. & Methods 310(1–2), 411415.CrossRefGoogle Scholar
Wilson, S. A., Chayen, N., Hemmings, A. M., Drew, R. E. & Pearl, L. H. (1991). Crystallisation and preliminary X-ray data for the negative regulator (AmiC) of the amidase operon of Pseudomonas aeruginosa. J. Mol. Biol. 222, 869871.CrossRefGoogle Scholar
Xuong, N. H., Cork, C, Hamlin, R., Howard, A., Katz, B., Kuttner, P. & Nielsen, C. (1981). Low temperature studies of elastase. Acta Cryst. Suppl. A 37, C-51.CrossRefGoogle Scholar
Yonath, A., Mussing, J. & Wittman, H. G. (1982). Parameters for crystal growth of ribosomal subunits. J. Cell Biochem. 19, 145155.CrossRefGoogle ScholarPubMed
Young, A.C, M., Dewan, J. C., Nave, C. & Tilton, R. F. (1993). Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures. J. Appl. Cryst. 26, 309319.CrossRefGoogle Scholar
46
Cited by