Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:25:35.650Z Has data issue: false hasContentIssue false

The Sydney University Stellar Interferometer: A Major Upgrade to Spectral Coverage and Performance

Published online by Cambridge University Press:  05 March 2013

J. Davis*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
M. J. Ireland
Affiliation:
Planetary Science, MS 150-21, Caltech, 1200 E. California Blvd, Pasadena, CA 91125, USA
J. Chow
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
A. P. Jacob
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
R. E. Lucas
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
J. R. North
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
J. W. O'Byrne
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
S. M. Owens
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
J. G. Robertson
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
E. B. Seneta
Affiliation:
Astrophysics Group, Cavendish Laboratory, Cambridge University, Cambridge, CB3 0HE, UK
W. J. Tango
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
P. G. Tuthill
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
*
DCorresponding author. Email: j.davis@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new beam-combination and detection system has been installed in the Sydney University Stellar Interferometer working at the red end of the visual spectrum (λλ 500–950 nm) to complement the existing blue-sensitive system (λλ 430–520 nm) and to provide an increase in sensitivity. Dichroic beam-splitters have been introduced to allow simultaneous observations with both spectral systems, albeit with some restriction on the spectral range of the longer wavelength system (λλ 550–760 nm). The blue system has been upgraded to allow remote selection of wavelength and spectral bandpass, and to enable simultaneous operation with the red system with the latter providing fringe-envelope tracking. The new system and upgrades are described and examples of commissioning tests presented. As an illustration of the improvement in performance the measurement of the angular diameter of the southern F supergiant δ CMa is described and compared with previous determinations.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2007

References

Baldwin, J. E., Boyson, R. C., Cox, G. C., Haniff, C. A., Rogers, J., Warner, P. J., Wilson, D. M. A. & Mackay, C. D., 1994, in SPIE: Amplitude and Intensity Spatial Interferometry II, 2200, 118 Google Scholar
Bracewell, R., 1965, The Fourier Transform and its Applications (New York: McGraw-Hill)Google Scholar
Davis, J., Ireland, M., Jacob, A. P., North, J., Owens, S. M., Robertson, J. G., Tango, W. J. & Tuthill, P. G., 2006, in SPIE: Advances in Stellar Interferometry, Eds. Monnier, J. D., Schller, M. & Danchi W. C., 6268, 626804 Google Scholar
Davis, J., Booth, A. J., Ireland, M. J., Jacob, A. P., North, J. R., Owens, S. M., Robertson, J. G., Tango, W. J. & Tuthill, P. G., 2007a, PASA, 24, 151 Google Scholar
Davis, J., Ireland, M. J., Jacob, A. P., North, J. R., Owens, S. M., Robertson, J. G., Tango, W. J. & Tuthill, P. G., 2007b, in Proc. ESO Workshop ‘The Power of Optical/IR Interferometry’, Eds. Paresce, F. & Richichi, A. (Berlin: Springer), in pressGoogle Scholar
Davis, J., Tango, W. J. & Booth, A. J., 2000, MNRAS, 318, 387Google Scholar
Davis, J., Tango, W. J., Booth, A. J., ten Brummelaar, T. A., Minard, R. A. & Owens, S. M., 1999a, MNRAS, 303, 773 Google Scholar
Davis, J., Tango, W. J., Booth, A. J., Thorvaldson, E. D. & Giovannis, J., 1999b, MNRAS, 303, 783 Google Scholar
Hanbury Brown, R., Davis, J. & Allen, L. R., 1974, MNRAS, 167, 121 Google Scholar
Ireland, M. J., 2005, PhD thesis, University of Sydney Google Scholar
Ireland, M. J., 2006, SPIE, 6268, 62680A-1Google Scholar
Ireland, M. J., Tuthill, P. G., Davis, J. & Tango, W. J., 2005, MNRAS, 361, 337 Google Scholar
Kiehling, R., 1987, A&AS, 69, 465 Google Scholar
Luck, R. E. & Lambert, D. L., 1985, ApJ, 298, 782 Google Scholar
North, J. R., Tuthill, P. G., Tango, W. J. & Davis, J., 2007, MNRAS, 377, 415 Google Scholar
Seneta, E. B., 1991, MSc thesis, University of Sydney Google Scholar
Silva, D. R. & Cornell, M. E., 1992, ApJS, 81, 865 Google Scholar
Tango, W. J. & Davis, J., 2002, MNRAS, 333, 642 Google Scholar
Tango, W. J. & Twiss, R. Q., 1980, Progress in Optics, XVII, 239 Google Scholar
Tango, W. J., et al., 2006, MNRAS, 370, 884 Google Scholar
Tuthill, P. G., Davis, J., Ireland, M., North, J., O'Byrne, J., Robertson, J. G. & Tango, W. J., 2004, in SPIE: New Frontiers in Stellar Interferometry, Ed. Traub, W. A., 5491, 499 Google Scholar