Published online by Cambridge University Press: 25 April 2016
Radio snapshot imaging is an efficient observing method which allows several sources to be observed in the one session. Snapshot observing with the Australia Telescope Compact Array (ATCA) involves special difficulties, as the small number of antennas combined with the short total integration time leads to high sidelobe levels in the raw images. The images can be improved markedly by standard deconvolution techniques, but more care is required in their use because of the difficulty in distinguishing real emission from artefacts. This study, based on a set of snapshot observations of strong sources at 5 GHz, gives guidance on both the planning of observations and the data reduction. We show that snapshot imaging with the 6 km ATCA can achieve a dynamic range of 100–200:1 provided certain conditions are met, namely a peak flux density > 100 mJy, an angular size ≤ 30″ and an hour-angle coverage spanning at least six well-separated 5-minute cuts. When observing weak sources it is essential for calibration sources to be selected carefully and observed frequently.