Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:35:05.171Z Has data issue: false hasContentIssue false

An Accretion-Disc Model for the Algol-Type Eclipsing Binary System AV Del

Published online by Cambridge University Press:  02 January 2013

S. M. R. Ghoreyshi*
Affiliation:
Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
J. Ghanbari
Affiliation:
Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Department of Physics, Khayyam Institute of Higher Education, Mashhad, Iran
F. Salehi
Affiliation:
Department of Physics, Khayyam Institute of Higher Education, Mashhad, Iran
*
CCorresponding author. Email: smrgho@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study inspects the light and radial-velocity curves of the eclipsing binary AV Del. In comparison with other studies already done, the study shows that the absolute elements, fundamental orbital and physical parameters of the system can be determined using the Wilson-Devinney code. Using these parameters, the configuration of the system is presented. Then, an accretion disc model for the system is introduced by using the shellspec code. The results indicate that AV Del is a semi-detached system in which an optically thick accretion disc is surrounding the primary star. The outer radius of the disc is 8.0 R, corresponding to a distance of 1.1 R from the surface of the secondary. Also, the temperature of the disc is calculated to be T = 5700 K.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Bradstreet, D. H., 1993, Light curve modeling of eclipsing binary stars (Springer-Verlag), 151CrossRefGoogle Scholar
Budaj, J. & Richards, M. T., 2004, Contrib. Astron. Obs. Skalanté Pleso, 34, 167Google Scholar
Budaj, J., Richards, M. T. & Miller, B., 2005, ApJ, 623, 411CrossRefGoogle Scholar
Halbedel, E. M., 1984, IBVS, 2549, 1Google Scholar
Haffmeister, C., 1935, Astron. Nature, 255, 401Google Scholar
Klinglesmith, D. A. & Sobieski, S., 1970, AJ, 75, 175CrossRefGoogle Scholar
Lucy, L. B., 1967, Zeit. Fur Astrophysic, 65, 89Google Scholar
Mader, J. A., Torres, G., Marshall, L. A. & Rizvi, A., 2005, AJ, 130, 234CrossRefGoogle Scholar
Popper, D. M., 1996, ApJS, 106, 133CrossRefGoogle Scholar
Qian, S., 2002, Ap&SS, 282, 399Google Scholar
Richards, M. T. & Albright, G. E., 1999, ApJS, 123, 537CrossRefGoogle Scholar
Rucinski, S. M., 2001, AJ, 122, 1007CrossRefGoogle Scholar
Schaller, G., Schaerer, D., Meyent, G. & Maeder, A., 1992, A&AS, 96, 269Google Scholar
Van, Hamme W., 1993, AJ, 106, 2096Google Scholar
Van, Hamme W. & Wilson, R. E., 2007, ApJ, 661 1129Google Scholar
Wilson, R. E., 1979, ApJ, 234, 1054CrossRefGoogle Scholar
Wilson, R. E., 1990, ApJ, 356, 613CrossRefGoogle Scholar
Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605CrossRefGoogle Scholar
Zucker, S. & Mazeh, T., 1994, ApJ, 420, 806CrossRefGoogle Scholar