Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qq8pn Total loading time: 0.247 Render date: 2021-06-23T10:19:43.751Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Southern-Hemisphere all-sky radio transient monitor for SKA-Low prototype stations

Published online by Cambridge University Press:  11 May 2021

M. Sokolowski
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
R. B. Wayth
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley 6845, Australia
N. D. R. Bhat
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
D. Price
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
J. W. Broderick
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
G. Bernardi
Affiliation:
Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
P. Bolli
Affiliation:
Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
R. Chiello
Affiliation:
University of Oxford, Denys Wilkinson Building, Oxford OX1 2JD, UK
G. Comoretto
Affiliation:
Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
B. Crosse
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
D. B. Davidson
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
G. Macario
Affiliation:
Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
A. Magro
Affiliation:
Institute of Space Sciences and Astronomy, University of Malta, Msida, Malta
A. Mattana
Affiliation:
Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, Bologna, Italy
D. Minchin
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
A. McPhail
Affiliation:
Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
J. Monari
Affiliation:
Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, Bologna, Italy
F. Perini
Affiliation:
Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, Bologna, Italy
G. Pupillo
Affiliation:
Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
G. Sleap
Affiliation:
Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
S. Tingay
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
D. Ung
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
A. Williams
Affiliation:
Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
Corresponding

Abstract

We present the first Southern-Hemisphere all-sky imager and radio-transient monitoring system implemented on two prototype stations of the low-frequency component of the Square Kilometre Array (SKA-Low). Since its deployment, the system has been used for real-time monitoring of the recorded commissioning data. Additionally, a transient searching algorithm has been executed on the resulting all-sky images. It uses a difference imaging technique to enable identification of a wide variety of transient classes, ranging from human-made radio-frequency interference to genuine astrophysical events. Observations at the frequency 159.375 MHz and higher in a single coarse channel ( $\approx$ 0.926 MHz) were made with 2 s time resolution, and multiple nights were analysed generating thousands of images. Despite having modest sensitivity ( $\sim$ few Jy beam–1), using a single coarse channel and 2-s imaging, the system was able to detect multiple bright transients from PSR B0950+08, proving that it can be used to detect bright transients of an astrophysical origin. The unusual, extreme activity of the pulsar PSR B0950+08 (maximum flux density $\sim$ 155 Jy beam–1) was initially detected in a ‘blind’ search in the 2020 April 10/11 data and later assigned to this specific pulsar. The limitations of our data, however, prevent us from making firm conclusions of the effect being due to a combination of refractive and diffractive scintillation or intrinsic emission mechanisms. The system can routinely collect data over many days without interruptions; the large amount of recorded data at 159.375 and 229.6875 MHz allowed us to determine a preliminary transient surface density upper limit of $1.32 \times 10^{-9} \text{deg}^{-2}$ for a timescale and limiting flux density of 2 s and 42 Jy, respectively. In the future, we plan to extend the observing bandwidth to tens of MHz and improve time resolution to tens of milliseconds in order to increase the sensitivity and enable detections of fast radio bursts below 300 MHz.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, M. M., et al. 2018, ApJ, 864, 22 Google Scholar
Anderson, M. M., et al. 2019, ApJ, 886, 123 Google Scholar
Andreoni, I., & Cooke, J. 2019, in Southern Horizons in Time-Domain Astronomy. Proceedings of the International Astronomical Union, 135 (arXiv:1802.01100), doi: 10.1017/S1743921318002399 CrossRefGoogle Scholar
Astropy, Collaboration, et al. 2013, A&A, 558, A33 Google Scholar
Bailes, M., et al. 2017, PASA, 34, e045 Google Scholar
Bell, M. E., et al. 2016, MNRAS, 461, 908 Google Scholar
Benz, A. O. 2009, Landolt BÖrnstein, 4, 103 CrossRefGoogle Scholar
Bhat, N. D. R., Tingay, S. J., & Knight, H. S. 2008, ApJ, 676, 1200 CrossRefGoogle Scholar
Bhat, N. D. R., et al. 2014, ApJ, 791, L32 CrossRefGoogle Scholar
Bolli, P., et al. 2020, IEEE OJAP, 1, 253 Google Scholar
CHIME/FRB Collaboration, et al. 2018, ApJ, 863, 48 CrossRefGoogle Scholar
CHIME/FRB Collaboration, et al. 2019, ApJ, 885, L24 CrossRefGoogle Scholar
Clark, M. A., La Plante, P. C., & Greenhill, L. J. 2011, arXiv e-prints, p. arXiv:1107.4264Google Scholar
Comoretto, G., et al. 2017, JAI, 6, 1641015 CrossRefGoogle Scholar
Davidson, D., et al. 2020a, in XXXIII General Assembly and Scientific Symposium of the International Union of Radio Science.Google Scholar
Davidson, D. B., et al. 2020b, in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1–4, doi: 10.23919/URSIGASS49373.2020.9232307 CrossRefGoogle Scholar
Davis, I., Taylor, G., & Dowell, J. 2020, MNRAS, 494, 4848 CrossRefGoogle Scholar
de Lera Acedo, E., Pienaar, H., & Fagnoni, N. 2018, in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 636Google Scholar
de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M., Jonas, J., Landecker, T. L., & Reich, P. 2008, MNRAS, 388, 247 CrossRefGoogle Scholar
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. W. 2009, IEEE Proc, 97, 1482 CrossRefGoogle Scholar
Ellingson, S. W., et al. 2013, IEEE TAP, 61, 2540 CrossRefGoogle Scholar
Galama, T. J., de Bruyn, A. G., van Paradijs, J., Hanlon, L., & Bennett, K. 1997, IEEE TAP, 325, 631 Google Scholar
Greisen, E. W. 2019, Aips Memo Series, AIPS FITS File Format. AIPS Memo 117 Google Scholar
Gupta, et al. V. 2020, ATel, 14040 Google Scholar
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1 Google Scholar
Imai, M., et al. 2016, ApJ, 826, 176 CrossRefGoogle Scholar
Kiefner, U., et al. 2021, RS, e2020RS007171 Google Scholar
Kuiack, M. J., Wijers, R. A. M. J., Shulevski, A., & Rowlinson, A. 2020a, arXiv e-prints, p. arXiv:2003.11138Google Scholar
Kuiack, M., Wijers, R. A. M. J., Shulevski, A., Rowlinson, A., Huizinga, F., Molenaar, G., & Prasad, P. 2020b, arXiv e-prints, p. arXiv:2003.13289Google Scholar
Kuiack, M., Wijers, R. A. M. J., Rowlinson, A., Shulevski, A., Huizinga, F., Molenaar, G., & Prasad, P. 2020c, MNRAS, 497, 846 CrossRefGoogle Scholar
Loi, S. T., et al. 2015, GRL, 42, 3707 Google Scholar
Lorimer, D. R., Yates, J. A., Lyne, A. G., & Gould, D. M. 1995, MNRAS, 273, 411 CrossRefGoogle Scholar
Macquart, J.-P., et al. 2010, PASA, 27, 272 Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993 CrossRefGoogle Scholar
McKee, J. W., et al. 2019, MNRAS, 483, 4784 Google Scholar
McSweeney, S. J., et al. 2020, PASA, 37, e034 Google Scholar
Morgan, J., & Ekers, R. 2021, arXiv e-prints, p. arXiv:2101.11851Google Scholar
Mozdzen, T., Mahesh, N., Monsalve, R., Rogers, A., & Bowman, J. 2019, MNRAS, 483, 4416 Google Scholar
Naldi, G., et al. 2017, JAI, 6, 1641014 Google Scholar
Obenberger, K. S., et al. 2014a, ApJ, 785, 27 CrossRefGoogle Scholar
Obenberger, K. S., et al. 2014b, ApJ, 788, L26 CrossRefGoogle Scholar
Obenberger, K. S., et al. 2015, JAI, 4, 1550004 CrossRefGoogle Scholar
Parent, E., et al. 2020, ApJ, 904, 92 Google Scholar
Pastor-Marazuela, I., et al. 2020, arXiv e-prints, p. arXiv:2012.08348Google Scholar
Phillips, J. A., & Clegg, A. W. 1992, Natur, 360, 137 CrossRefGoogle Scholar
Pilia, M., et al. 2020, ApJ, 896, L40 CrossRefGoogle Scholar
Pilkington, J. D. H., Hewish, A., Bell, S. J., & Cole, T. W. 1968, Natur, 218, 126 CrossRefGoogle Scholar
Pleunis, Z., et al. 2020, ApJ, 911, L3Google Scholar
Popov, M. V., & Stappers, B. 2007, A&A, 470, 1003 CrossRefGoogle Scholar
Prabu, S., Hancock, P. J., Zhang, X., & Tingay, S. J., 2020a, PASA, 37, e010 CrossRefGoogle Scholar
Prabu, S., Hancock, P., Zhang, X., & Tingay, S. J. 2020b, PASA, 37, e052 CrossRefGoogle Scholar
Prasad, P., et al. 2016, JAI, 5, 1641008 CrossRefGoogle Scholar
Price-Whelan, A. M., et al. 2018, AJ, 156, 123 CrossRefGoogle Scholar
Ruan, D., Taylor, G. B., Dowell, J., Stovall, K., Schinzel, F. K., & Demorest, P. B., 2020, MNRAS, 495, 2125 CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433 (arXiv:astro-ph/0612759)Google Scholar
Singal, A. K., & Vats, H. O. 2012, AJ, 144, 155 CrossRefGoogle Scholar
Sokolowski, M., 2008, PhD thesisGoogle Scholar
Sokolowski, M., Broderick, J. W.,Wayth, R. B., & Davidson, D. B. 2021, in 15th European Conference on Antennas and Propagation (EuCAP 2021).Google Scholar
Sokolowski, M., Wayth, R. B., & Ellement, T. 2017, in Radio Frequency Interference (RFI), p. 7833541, doi: 10.1109/RFINT.2016.7833541 CrossRefGoogle Scholar
Sokolowski, M., Wayth, R. B., & Lewis, M. 2015, in 2015 IEEE Global Electromagnetic Compatibility Conference (GEMCCON), 1–6, doi: 10.1109/GEMCCON.2015.7386856 CrossRefGoogle Scholar
Sokolowski, M., et al. 2020, ATel, 14044 Google Scholar
Staelin, D. H., & Reifenstein Edward, C. I. 1968, Sci, 162, 1481 CrossRefGoogle Scholar
Staley, T. D., & Fender, R. 2016, arXiv e-prints, p. arXiv:1606.03735Google Scholar
Stewart, A. J., et al. 2016, MNRAS, 456, 2321 Google Scholar
Sutinjo, A. T., Sokolowski, M., Kovaleva, M., Ung, D. C. X., Broderick, J. W., Wayth, R. B., Davidson, D. B., & Tingay, S. J. 2021, aap, 646, A143 CrossRefGoogle Scholar
Swinbank, J., 2014, A&C, 7, 12 CrossRefGoogle Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007 Google Scholar
Tingay, S. J., Sokolowski, M., Wayth, R., & Ung, D. 2020, PASA, 37, e039 CrossRefGoogle Scholar
Tsai Wei, J., Simonetti, J. H., Akukwe, B., Bear, B., Gough, J. D., Shawhan, P., & Kavic, M. 2016, AJ, 151, 28 CrossRefGoogle Scholar
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22 CrossRefGoogle Scholar
van Es, A. J. J., et al. 2020, in Ground-based and Airborne Telescopes VIII. SPIE, 1449, doi: 10.1117/12.2562391, https://doi.org/10.1117/12.2562391 CrossRefGoogle Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2 Google Scholar
Varghese, S. S., Obenberger, K. S., Dowell, J., & Taylor, G. B. 2019, ApJ, 874, 151 CrossRefGoogle Scholar
Wayth, R., et al. 2017, PASA, 34, e034 Google Scholar
Wayth, R. B., et al. 2018, PASA, 35, 33 Google Scholar
Zhang, X., et al. 2018, MNRAS, 477, 5167 Google Scholar
Zhuravlev, V. I., Popov, M. V., Soglasnov, V. A., Kondrat’ev, V. I., Kovalev, Y. Y., Bartel, N., & Ghigo, F. 2013, MNRAS, 430, 2815 CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Southern-Hemisphere all-sky radio transient monitor for SKA-Low prototype stations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Southern-Hemisphere all-sky radio transient monitor for SKA-Low prototype stations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Southern-Hemisphere all-sky radio transient monitor for SKA-Low prototype stations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *