Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.29 Render date: 2021-09-17T05:01:07.039Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Murchison Widefield Array rapid-response observations of the short GRB 180805A

Published online by Cambridge University Press:  10 June 2021

G. E. Anderson*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
P. J. Hancock
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
A. Rowlinson
Affiliation:
Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam, The Netherlands Netherlands Institute for Radio Astronomy (ASTRON), PO Box 2, 7990 AA Dwingeloo, The Netherlands
M. Sokolowski
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
A. Williams
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
J. Tian
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
J. C. A. Miller-Jones
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
N. Hurley-Walker
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
K. W. Bannister
Affiliation:
Australia Telescope National Facility, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
M. E. Bell
Affiliation:
University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
C. W. James
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
D. L. Kaplan
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211, USA
Tara Murphy
Affiliation:
Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
S. J. Tingay
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
B. W. Meyers
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
M. Johnston-Hollitt
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
R. B. Wayth
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
*Corresponding
Author for correspondence: Gemma E. Anderson, E-mail: gemma.anderson@curtin.edu.au

Abstract

Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ( $z\sim 2.5$ ) to 1 750 Jy ms at DM $=200$ pc cm–3 ( $z\sim 0.1)$ , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., et al. 2016, ApJ, 826, L13 Google Scholar
Abbott, B. P., et al. 2017a, PhRvL, 119, 161101Google Scholar
Abbott, B. P., et al. 2017b, ApJ, 848, L12Google Scholar
Anderson, G. E. 2021, Calibration solutions, light curve and dedispersion data for Murchison Widefield Array rapid-response observations of the short GRB 180805A, doi: 10.5281/ZENODO.4574851, https://zenodo.org/record/4574851CrossRefGoogle Scholar
Anderson, M. M., et al. 2018, ApJ, 864, 22Google Scholar
Astropy Collaboration, et al. 2018, AJ, 156, 123 Google Scholar
Beardmore, A. P., Evans, P. A., Goad, M. R., & Osborne, J. P. 2018, GCN, 23075, 1 Google Scholar
Bhandari, S., et al. 2020, ApJ, 901, L20CrossRefGoogle Scholar
Bhat, N. D. R., Cordes, J. M., Camilo, F., Nice, D. J., & Lorimer, D. R. 2004, ApJ, 605, 759CrossRefGoogle Scholar
Bloom, J. S., Frail, D. A., & Sari, R., 2001, AJ, 121, 2879CrossRefGoogle Scholar
Buikema, A., et al. 2020, Phys. Rev. D, 102, 062003Google Scholar
CHIME/FRB Collaboration, et al. 2019a, Nature, 566, 230Google Scholar
CHIME/FRB Collaboration, et al. 2019b, Nature, 566, 235Google Scholar
Caleb, M., Stappers, B. W., Rajwade, K., Flynn, C. 2019, MNRAS, 484, 5500CrossRefGoogle Scholar
Callister, T. A., et al. 2019, ApJ, 877, L39CrossRefGoogle Scholar
Cordes, J. M., & Lazio, T. J. W. 2002, arXiv e-prints, pp astro–ph/0207156Google Scholar
D’Avanzo, et al. 2014, MNRAS, 442, 2342Google Scholar
D’Avanzo, P., Barthelmy, S. D., Emery, S. W. K., Kuin, N. P. M., Lien, A. Y., Melandri, A., Moss, M. J., & Sbarufatti, B., 2018, GCN, 23074, 1 Google Scholar
Duchesne, S. W., Johnston-Hollitt, M., Zhu, Z., Wayth, R. B., & Line, J. L. B. 2020, PASA, 37, e037CrossRefGoogle Scholar
Eastwood, M. W., et al. 2018, AJ, 156, 32Google Scholar
Ellingson, S. W., Craig, J., Dowell, J., Taylor, G. B., & Helmboldt, J. F. 2013, arXiv e-prints, p. arXiv:1307.0697Google Scholar
Evans, P. A., et al. 2010, A&A, 519, A102Google Scholar
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137CrossRefGoogle Scholar
Faucher-Giguère, C.-A., & Kaspi, V. M. 2006, ApJ, 643, 332CrossRefGoogle Scholar
Feldman, S. I. 1979, Softw. Pract. Exp., 9, 255 CrossRefGoogle Scholar
Fonseca, E., et al. 2020, ApJ, 891, L6CrossRefGoogle Scholar
Galama, T. J., et al. 1999, Nature, 398, 394Google Scholar
Gehrels, N., et al. 2004, ApJ, 611, 1005Google Scholar
Hallinan, G., et al. 2017, Science, 358, 1579 CrossRefGoogle Scholar
Hancock, P. J., Hurley-Walker, N., & White, T. E. 2019a, A&C, 27, 23CrossRefGoogle Scholar
Hancock, P. J., et al. 2019b, PASA, 36, e046Google Scholar
Hansen, B. M. S., & Lyutikov, M. 2001, MNRAS, 322, 695CrossRefGoogle Scholar
Hotan, A. W., et al. 2014, PASA, 31, e041 Google Scholar
Houben, L. J. M., Spitler, L. G., ter Veen, S., Rachen, J. P., Falcke, H., & Kramer, M. 2019, A&A, 623, A42CrossRefGoogle Scholar
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 CrossRefGoogle Scholar
Hurley-Walker, N., & Hancock, P. J. 2018, A&C, 25, 94CrossRefGoogle Scholar
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146Google Scholar
Inoue, S. 2004, MNRAS, 348, 999CrossRefGoogle Scholar
James, C. W., et al. 2019a, PASA, 36, e009Google Scholar
James, C. W., Ekers, R. D., Macquart, J. P., Bannister, K. W., & Shannon, R. M. 2019b, MNRAS, 483, 1342CrossRefGoogle Scholar
James, C. W., Anderson, G. E., Wen, L., Bosveld, J., Chu, Q., Kovalam, M., Slaven-Blair, T. J., & Williams, A. 2019c, MNRAS, 489, L75CrossRefGoogle Scholar
James, C. W., et al. 2020, MNRAS, 495, 2416CrossRefGoogle Scholar
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python, https://www.scipy.org/Google Scholar
Kaplan, D. L., et al. 2015, ApJ, 814, L25CrossRefGoogle Scholar
Kaplan, D. L., Murphy, T., Rowlinson, A., Croft, S. D., Wayth, R. B., & Trott, C. M. 2016, PASA, 33, e050CrossRefGoogle Scholar
Kouveliotou, C., Meegan, C. A., Fishman, G. J., Bhat, N. P., Briggs, M. S., Koshut, T. M., Paciesas, W. S., & Pendleton, G. N. 1993, ApJ, 413, L101CrossRefGoogle Scholar
Kumar, P., et al. 2019, ApJ, 887, L30CrossRefGoogle Scholar
Kumar, P., et al. 2020, arXiv e-prints, p. arXiv:2009.01214Google Scholar
Kurtzer, G. M., Sochat, V., & Bauer, M. W. 2017, PLOS ONE, 12, e0177459 CrossRefGoogle Scholar
Lasky, P. D., Haskell, B., Ravi, V., Howell, E. J., & Coward, D. M., 2014, Phys. Rev. D, 89, 047302Google Scholar
Law, C. J., et al. 2018, ApJS, 236, 8CrossRefGoogle Scholar
Lyutikov, M. 2013, ApJ, 768, 63CrossRefGoogle Scholar
Macquart, J. P., Shannon, R. M., Bannister, K. W., James, C. W., Ekers, R. D., & Bunton, J. D. 2019, ApJ, 872, L19CrossRefGoogle Scholar
Macquart, J. P., et al. 2020, Nature, 581, 391Google Scholar
Meegan, C., et al. 2009, ApJ, 702, 791CrossRefGoogle Scholar
Metzger, B. D., Berger, E., & Margalit, B. 2017, ApJ, 841, 14CrossRefGoogle Scholar
Obenberger, K. S., et al. 2014, ApJ, 785, 27CrossRefGoogle Scholar
Obenberger, K. S., et al. 2015, J. Astronom. Instrument., 4, 1550004Google Scholar
Offringa, A. R., de Bruyn, A. G., Biehl, M., Zaroubi, S., Bernardi, G., & Pandey, V. N. 2010, MNRAS, 405, 155Google Scholar
Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M. 2012, A&A, 539, A95CrossRefGoogle Scholar
Offringa, A. R., et al. 2014, MNRAS, 444, 606Google Scholar
Palmer, D. M., et al. 2018, GCN, 23081, 1 Google Scholar
Petroff, E., et al. 2016, PASA, 33, e045Google Scholar
Pleunis, et al. 2021, ApJ, 911, L3Google Scholar
Prasad, P., Wijnholds, S. J., Huizinga, F., & Wijers, R. A. M. J. 2014, A&A, 568, A48CrossRefGoogle Scholar
Prasad, P., et al. 2016, J. Astronom. Instrument., 5, 1641008Google Scholar
Qiu, H., et al. 2020, MNRAS, 497, 1382Google Scholar
Ravi, V., & Lasky, P. D. 2014, MNRAS, 441, 2433CrossRefGoogle Scholar
Ravi, V., et al. 2019, Nature, 572, 352Google Scholar
Rowlinson, A., & Anderson, G. E. 2019, MNRAS, 489, 3316CrossRefGoogle Scholar
Rowlinson, A., O’Brien, P. T., Metzger, B. D., Tanvir, N. R., & Levan, A. J. 2013, MNRAS, 430, 1061CrossRefGoogle Scholar
Rowlinson, A., et al. 2016, MNRAS, 458, 3506Google Scholar
Rowlinson, A., et al. 2019, MNRAS, 490, 3483CrossRefGoogle Scholar
Rowlinson, A., et al. 2020, arXiv e-prints, p. arXiv:2008.12657Google Scholar
Sakamoto, T., et al. 2011, ApJS, 195, 2CrossRefGoogle Scholar
Santana, R., Barniol Duran, R., & Kumar, P. 2014, ApJ, 785, 29CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, A Retrospective View of MIRIAD. p. 433 Google Scholar
Seaman, R., et al. 2011, preprint (arXiv:1110.0523)Google Scholar
Shannon, R. M. et al., 2018, Nature, 562, 386Google Scholar
Smirnov, N. V. 1939, Bull. Math. Univ. Moscou, 2, 3 Google Scholar
Sokolowski, M., et al. 2018, ApJ, 867, L12Google Scholar
Spitler, L. G., et al. 2016, Nature, 531, 202Google Scholar
Staley, T. D., & Fender, R. 2016, preprint, (arXiv:1606.03735)Google Scholar
Stanek, K. Z., et al. 2003, ApJ, 591, L17CrossRefGoogle Scholar
Swinbank, J. J. 2014, A&C, 7, 12 CrossRefGoogle Scholar
Taylor, M. B. 2005, in Shopbell P., Britton, M., Ebert R., eds, Astronomical Society of the Pacific Conference Series Vol. 347, Astronomical Data Analysis Software and Systems XIV. p. 29 Google Scholar
Taylor, J. H., & Cordes, J. M. 1993, ApJ, 411, 674CrossRefGoogle Scholar
Taylor, G. B., et al. 2012, J. Astronom. Instrument., 1, 125004Google Scholar
The Astropy Collaboration, et al. 2013, Astronomy & Astrophysics, 558, 9 CrossRefGoogle Scholar
The CHIME/FRB Collaboration, et al. 2019, arXiv e-prints, p. arXiv:1908.03507Google Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007Google Scholar
Tingay, S. J., et al. 2015, AJ, 150, 199Google Scholar
Tommaso, P. D., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. 2017, Nat. Biotechnol., 35, 316 CrossRefGoogle Scholar
Totani, T. 2013, PASJ, 65, L12CrossRefGoogle Scholar
Tremblay, S. E., et al. 2015, PASA, 32 Google Scholar
Usov, V. V. 1992, Nature, 357, 472Google Scholar
Usov, V. V., & Katz, J. I. 2000, A&A, 364, 655 Google Scholar
Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang, F.-Y. 2016, ApJ, 822, L7CrossRefGoogle Scholar
Wayth, R. B., et al. 2015, PASA, 32, e025Google Scholar
Wayth, R. B., et al. 2018, PASA, 35Google Scholar
Wenger, M., et al. 2000, A&AS, 143, 9Google Scholar
Yancey, C. C., et al. 2015, ApJ, 812, 168CrossRefGoogle Scholar
Yao, J., Manchester, R. N., & Wang, N. 2019, YMW16: Electron-density model (ascl:1908.022)Google Scholar
Yoo, A. B., Jette, M. A., & Grondona, M. 2003, in Feitelson D., Rudolph, L., Schwiegelshohn U., eds, Job Scheduling Strategies for Parallel Processing. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 44–60Google Scholar
Zhang, B., 2014, ApJ, 780, L21CrossRefGoogle Scholar
Zhang, B., & Mészáros, P., 2001, ApJ, 552, L35CrossRefGoogle Scholar
ter Veen, S., et al. 2019, A&A, 621, 57Google Scholar
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Murchison Widefield Array rapid-response observations of the short GRB 180805A
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Murchison Widefield Array rapid-response observations of the short GRB 180805A
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Murchison Widefield Array rapid-response observations of the short GRB 180805A
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *