Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-rpk4r Total loading time: 0.278 Render date: 2022-06-30T17:07:46.843Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Modelling and peeling extended sources with shapelets: A Fornax A case study

Published online by Cambridge University Press:  16 July 2020

J. L. B. Line*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Perth, WA6845, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D)
D. A. Mitchell
Affiliation:
CSIRO Astronomy and Space Science (CASS), PO Box 76, Epping, NSW1710, Australia
B. Pindor
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D) The University of Melbourne, School of Physics, Parkville, VIC3010, Australia
J. L. Riding
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D) The University of Melbourne, School of Physics, Parkville, VIC3010, Australia
B. McKinley
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Perth, WA6845, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D)
R. L. Webster
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D) The University of Melbourne, School of Physics, Parkville, VIC3010, Australia
C. M. Trott
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Perth, WA6845, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D)
N. Hurley-Walker
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Perth, WA6845, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D)
A. R. Offringa
Affiliation:
Netherlands Institute for Radio Astronomy (ASTRON), 7991 PDDwingeloo, The Netherlands
*
Author for correspondence: Jack Laurence Bramble Line, E-mail: jack.line@curtin.edu.au

Abstract

To make a power spectrum (PS) detection of the 21-cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to ‘shapelets’, an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular resolution of the data is changed. We find that when increasing the angular resolution of the data, the MS CLEAN model worsens at large angular scales. When testing on real Murchison Widefield Array data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation, we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2020; published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astropy Collaboration, et al. 2013, A&A, 558, 33Google Scholar
Astropy Collaboration, et al. 2018, AJ, 156, 123CrossRefGoogle Scholar
Bacon, D. J., Rowe, B., Patel, P., Beswick, R. J., Abdalla, F. B., & Smirnov, O. M. 2014, MNRAS, 444, 2893Google Scholar
Barry, N., et al. 2019, ApJ , 884, 1CrossRefGoogle Scholar
Bastien, D., Oozeer, N., & Somanah, R. 2017, IOP Conference Series: Materials Science and Engineering, 198CrossRefGoogle Scholar
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693CrossRefGoogle Scholar
Cornwell, T. J. 2008, IEEE Journal of Selected Topics in Signal Processing , 2, 793CrossRefGoogle Scholar
DeBoer, D. R., et al. 2017, PASP , 129, 045001CrossRefGoogle Scholar
Dewdney, P. E., Turner, W., Millenaar, R., Mccool, R., Lazio, J., & Cornwell, T. J. 2013, SKA Technical DocumentGoogle Scholar
Fomalont, E. B., Ebneter, K. A., van Breugel, W. J. M., & Ekers, R. D. 1989, ApJ , 346, L17CrossRefGoogle Scholar
Gooch, R. 1996, Karma: a Visualization Test-Bed. p. 80Google Scholar
Hurley-Walker, N. 2020, MNRAS, in preparation.Google Scholar
Hurley-Walker, N., et al. 2017, MNRAS , 464, 1146CrossRefGoogle Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A , 598, A78Google Scholar
Jacobs, D. C., et al. 2016, ApJ , 825, 114CrossRefGoogle Scholar
Jordan, C. H., et al. 2017, MNRAS , 471, 3974CrossRefGoogle Scholar
Joye, W. A. & Mandel, E., 2003. New Features of SAOImage DS9, p. 489Google Scholar
Kapinska, A. D., et al. 2017, ApJ , 838, 68CrossRefGoogle Scholar
Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A. G., Koopmans, L. V. E., & Noordam, J. 2011, MNRAS , 414, 1656CrossRefGoogle Scholar
Kerrigan, J. R., et al. 2018, ApJ , 864, 131CrossRefGoogle Scholar
Lane, W. M., Cotton, W. D., Helmboldt, J. F., & Kassim, N. E. 2012, RaSc, 47CrossRefGoogle Scholar
Large, M. I, Mills, B. Y., Little, A. G., Crawford, D. F. & Sutton, J. M., 1981, MNRAS, 194, 693CrossRefGoogle Scholar
Li, W., et al. 2019, ApJ, 887, 141CrossRefGoogle Scholar
Line, J. L. B., Webster, R. L. L., Pindor, B., Mitchell, D. A. A., & Trott, C. M. M. 2017, PASA, 34, e003CrossRefGoogle Scholar
Lynch, C. 2020, PASA, in preparation.Google Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G., & Sadler, E. M. 2003, MNRAS, 342, 1117CrossRefGoogle Scholar
McKinley, B., et al. 2013, MNRAS, 436, 1286CrossRefGoogle Scholar
Mellema, G., et al. 2013, ExA, 36, 235Google Scholar
Mertens, F. G., et al. 2020, MNRAS, 493, 1662CrossRefGoogle Scholar
Mesinger, A., Greig, B., & Sobacchi, E. 2016, MNRAS, 459, 2342CrossRefGoogle Scholar
Mitchell, D. A., Greenhill, L. J., Wayth, R. B., Sault, R. J., Lonsdale, C. J., Cappallo, R. J., Morales, M. F., & Ord, S. M. 2008, ISTSP, 2, 707Google Scholar
Morales, M. F., & Wyithe, J. S. B. 2010, ARA&A, 48, 127CrossRefGoogle Scholar
Mouri Sardarabadi, A., & Koopmans, L. V. E. 2019, MNRAS, 483, 5480CrossRefGoogle Scholar
Nickolls, J., Buck, I., Garland, M., & Skadron, K. 2008, Queue, 6, 40CrossRefGoogle Scholar
Noordam, J. E. 2004, in Ground-based Telescopes, ed. Oschmann, J. M. Jr. (Vol. 5489), 817. doi: 10.1117/12.544262CrossRefGoogle Scholar
Offringa, A. R. & Smirnov, O. 2017, MNRAS, 471, 301CrossRefGoogle Scholar
Offringa, A. R., et al. 2014, MNRAS, 444, 606CrossRefGoogle Scholar
Offringa, A. R., et al. 2015, PASA, 32, e008CrossRefGoogle Scholar
Offringa, A. R., et al. 2016, MNRAS, 458, 1057CrossRefGoogle Scholar
Parsons, A. R., et al. 2010, AJ, 139, 1468CrossRefGoogle Scholar
Patil, A. H., et al. 2017, ApJ, 838, 65CrossRefGoogle Scholar
Pritchard, J. R., & Loeb, A. 2012, RPPh. Physical Society (Great Britain), 75, 086901CrossRefGoogle Scholar
Procopio, P., et al. 2017, PASA, 34, e033CrossRefGoogle Scholar
Refregier, A. 2003, MNRAS, 338, 35CrossRefGoogle Scholar
Riding, J. L., Mitchell, D. A., & Webster, R. L. 2017, in Astronomical Data Analysis Software and Systems XXV. Astronomical Society of the Pacific Conference Series, doi: 2017ASPC.512.257RGoogle Scholar
Robitaille, T. 2019, APLpy v2.0: The Astronomical Plotting Library in Python, doi: 10.5281/zenodo.2567476CrossRefGoogle Scholar
Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical Plotting Library in Python, Astrophysics Source Code Library (ascl:1208.017)Google Scholar
Schechtman-Rook, A., Bershady, M. A., & Wood, K. 2012, ApJ, 746CrossRefGoogle Scholar
Sokolowski, M., et al. 2017, PASA, 34, e062CrossRefGoogle Scholar
Tagore, A. S. & Jackson, N. 2016, MNRAS, 457, 3066CrossRefGoogle Scholar
Thompson, A. R., Moran, J. M., & Swenson, G. W. Jr. 2001, Interferometry and Synthesis inRadio Astronomy (2nd edn.; Wiley)Google Scholar
Tingay, S. J. J., et al. 2013, PASA, 30, e007CrossRefGoogle Scholar
Trott, C. M., et al. 2016, ApJ, 752, 34Google Scholar
Trott, C. M., et al. 2020, MNRAS, 19, 1Google Scholar
Wayth, R. B., et al. 2015, PASA, 32, e025CrossRefGoogle Scholar
Wayth, R. B., et al. 2018, PASA, 35, e033CrossRefGoogle Scholar
Yatawatta, S. 2010, in 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2010 , 6972Google Scholar
Yatawatta, S., Zaroubi, S., de Bruyn, G., Koopmans, L., & Noordam, J. 2009, in 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop (IEEE), 150155, doi: 10.1109/DSP.2009.4785912CrossRefGoogle Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2Google Scholar
van der Tol, S., Veenboer, B., & Offringa, A. R., 2018, A&A, 616, A27Google Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modelling and peeling extended sources with shapelets: A Fornax A case study
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Modelling and peeling extended sources with shapelets: A Fornax A case study
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Modelling and peeling extended sources with shapelets: A Fornax A case study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *