Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.468 Render date: 2022-08-13T19:02:23.606Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The GLEAMing of the first supermassive black holes

Published online by Cambridge University Press:  16 July 2020

Guillaume Drouart*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia
Nick Seymour
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia
Tim J. Galvin
Affiliation:
CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia
Jose Afonso
Affiliation:
Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT1349-018 Lisboa, Portugal
Joseph R. Callingham
Affiliation:
ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands
Carlos De Breuck
Affiliation:
European Southern Observatory, Karl Schwarzschild Straße 2, 85748 Garching bei München, Germany
Melanie Johnston-Hollitt
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia
Anna D. Kapińska
Affiliation:
National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801, USA
Matthew D. Lehnert
Affiliation:
Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France
Joël Vernet
Affiliation:
European Southern Observatory, Karl Schwarzschild Straße 2, 85748 Garching bei München, Germany
*
Author for correspondence: Guillaume Drouart, E-mail: guillaume.drouart@curtin.edu.au

Abstract

We present the results of a new selection technique to identify powerful ($L_{\rm 500\,MHz} \gt 10^{27}\,\text{WHz}^{-1}$) radio galaxies towards the end of the Epoch of Reionisation. Our method is based on the selection of bright radio sources showing radio spectral curvature at the lowest frequency (${\sim}100\,\text{MHz}$) combined with the traditional faintness in K-band for high-redshift galaxies. This technique is only possible, thanks to the Galactic and Extra-galactic All-sky Murchison Wide-field Array survey which provides us with 20 flux measurements across the 70–$230\,\text{MHz}$ range. For this pilot project, we focus on the GAMA 09 field to demonstrate our technique. We present the results of our follow-up campaign with the Very Large Telescope, Australian Telescope Compact Array, and the Atacama Large Millimetre Array to locate the host galaxy and to determine its redshift. Of our four candidate high-redshift sources, we find two powerful radio galaxies in the $1<z<3$ range, confirm one at $z=5.55$, and present a very tentative $z=10.15$ candidate. Their near-infrared and radio properties show that we are preferentially selecting some of the most radio luminous objects, hosted by massive galaxies very similar to powerful radio galaxies at $1<z<5$. Our new selection and follow-up technique for finding powerful radio galaxies at $z>5.5$ has a high 25–50% success rate.

Type
Research Article
Copyright
© Astronomical Society of Australia 2020; published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. 1974, IEEETAC, 19, 716CrossRefGoogle Scholar
Arnaboldi, M., Neeser, M. J., Parker, L. C., Rosati, P., Lombardi, M., Dietrich, J. P., & Hummel, W. 2007, Msngr, 127, 28Google Scholar
Bañados, E., et al. 2016, ApJS, 227, 11Google Scholar
Bañados, E., et al. 2018a, Natur, 553, 473Google Scholar
Bañados, E., Carilli, C., Walter, F., Momjian, E., Decarli, R., Farina, E. P., Mazzucchelli, C., & Venemans, B. P., 2018b, ApJ, 861, L14CrossRefGoogle Scholar
Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., & Witzel, A. 1977, AA, 500, 135Google Scholar
Barthel, P. D. 1989, ApJ, 336, 606CrossRefGoogle Scholar
Best, P. N., Ker, L. M., Simpson, C., Rigby, E. E., & Sabater, J. 2014, MNRAS, 445, 955CrossRefGoogle Scholar
Blain, A. W., Smail, I., Ivison, R. J., & Kneib, J.-P. 1999, MNRAS, 302, 632CrossRefGoogle Scholar
Blumenthal, G., & Miley, G. 1979, AA, 80, 13Google Scholar
Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503CrossRefGoogle Scholar
Broderick, J. W., Bryant, J. J., Hunstead, R. W., Sadler, E. M., & Murphy, T. 2007, MNRAS, 381, 341CrossRefGoogle Scholar
Burnham, K. P., & Anderson, D. R. 2002, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2 edn.; New York: Springer-Verlag). https://www.springer.com/gp/book/9780387953649Google Scholar
Carilli, C. L., Gnedin, N., Furlanetto, S., & Owen, F. 2004, NewAR, 48, 1053CrossRefGoogle Scholar
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105CrossRefGoogle Scholar
Ciardi, B., et al. 2015, MNRAS, 453, 101Google Scholar
Collaboration, A., et al. 2013, A&A, 558, A33Google Scholar
Collaboration, A., et al. 2018, AJ, 156, 123Google Scholar
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693CrossRefGoogle Scholar
De Breuck, C., Hunstead, R. W., Sadler, E. M., Rocca-Volmerange, B., & Klamer, I. 2004, MNRAS, 347, 837CrossRefGoogle Scholar
De Breuck, C., Tang, Y., de Bruyn, A. G., Röttgering, H., & van Breugel, W. 2002, A&A, 394, 59CrossRefGoogle Scholar
De Breuck, C., van Breugel, W., Röttgering, H. J. A., & Miley, G. 2000, A&AS, 143, 303CrossRefGoogle Scholar
De Breuck, C., et al. 2010, ApJ, 725, 36CrossRefGoogle Scholar
Driver, S. P., et al. 2009, A&G, 50, 5.12Google Scholar
Drouart, G., & Falkendal, T. 2018, Astrophysics Source Code Library, p. ascl:1809.015Google Scholar
Drouart, G., et al. 2014, A&A, 566, A53CrossRefGoogle Scholar
Eales, S., Rawlings, S., Law-Green, D., Cotter, G., & Lacy, M., 1997, MNRAS, 291, 593CrossRefGoogle Scholar
Emonts, B. H. C., et al. 2014, MNRAS, 438, 2898Google Scholar
Fan, L., Knudsen, K. K., Fogasy, J., & Drouart, G. 2018, ApJ, 856, L5CrossRefGoogle Scholar
Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950Google Scholar
Frater, R. H., Brooks, J. W., & Whiteoak, J. B. 1992, JEEEA, 12, 103Google Scholar
Galametz, A., et al. 2012, ApJ, 749, 169CrossRefGoogle Scholar
Gullberg, B., et al. 2016, A&A, Volume 591, id.A73, 13 pp. 591, A73CrossRefGoogle Scholar
Haiman, Z. 2004, ApJ, 613, 36CrossRefGoogle Scholar
Hancock, P. J., Trott, C. M., & Hurley-Walker, N. 2018, PASA, 35, e011CrossRefGoogle Scholar
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146Google Scholar
Ker, L. M., Best, P. N., Rigby, E. E., Röttgering, H. J. A., & Gendre, M. A. 2012, MNRAS, 420, 2644CrossRefGoogle Scholar
Klamer, I. J., Ekers, R. D., Bryant, J. J., Hunstead, R. W., Sadler, E. M., & De Breuck, C. 2006, MNRAS, 371, 852CrossRefGoogle Scholar
Lilly, S. J., & Longair, M. S. 1984, MNRAS, 211, 833CrossRefGoogle Scholar
Lonsdale, C. J., et al. 2009, IEEEP, 97, 1497Google Scholar
Mayo, J. H., Vernet, J., De Breuck, C., Galametz, A., Seymour, N., & Stern, D. 2012, A&A, 539, A33CrossRefGoogle Scholar
McGreer, I. D., Becker, R. H., Helfand, D. J., & White, R. L. 2006, ApJ, 652, 157CrossRefGoogle Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data Analysis Software and Systems XVI, Vol. 376, 127Google Scholar
Miley, G., & De Breuck, C. 2008, A&ARv, 15, 67CrossRefGoogle Scholar
Nesvadba, N. P. H., Drouart, G., De Breuck, C., Best, P., Seymour, N., & Vernet, J. 2017, A&A, Volume 600, id.A121, 11 pp., 600, A121CrossRefGoogle Scholar
Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M., van Breugel, W. 2008, A&A, 491, 407CrossRefGoogle Scholar
Partridge, B., López-Caniego, M., Perley, R. A., Stevens, J., Butler, B. J., Rocha, G., Walter, B., & Zacchei, A. 2016, ApJ, 821, 61CrossRefGoogle Scholar
Rocca-Volmerange, B., Le Borgne, D., De Breuck, C., Fioc, M., & Moy, E. 2004, A&A, 415, 931CrossRefGoogle Scholar
Rottgering, H. J. A., Lacy, M., Miley, G. K., Chambers, K. C., & Saunders, R. 1994, A&AS, 108, 79Google Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, Astronomical Data Analysis Software and Systems IV, Vol. 77, 433Google Scholar
Sault, R. J., & Wieringa, M. H. 1994, A&AS, 108, 585Google Scholar
Saxena, A., et al. 2018a, MNRAS, 475, 5041Google Scholar
Saxena, A., et al. 2018b, MNRAS, 480, 2733Google Scholar
Saxena, A., et al. 2019, arXiv e-prints, p. arXiv:1906.00746Google Scholar
Seymour, N., et al. 2007, ApJS, 171, 353Google Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1Google Scholar
Stern, D., & Spinrad, H. 1999, PASP, 111, 1475CrossRefGoogle Scholar
Strandet, M. L., et al. 2016, ApJ, 822, 80Google Scholar
Tacconi, L. J., et al. 2010, Natur, 463, 781Google Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007Google Scholar
Turner, R. J., Shabala, S. S., & Krause, M. G. H. 2018, MNRAS, 474, 3361CrossRefGoogle Scholar
van Breugel, W. J. M., Stanford, S. A., Spinrad, H., Stern, D., & Graham, J. R. 1998, ApJ, 502, 614CrossRefGoogle Scholar
van Breugel, W., De Breuck, C., Stanford, S. A., Stern, D., Röttgering, H., & Miley, G. 1999, ApJ, 518, L61CrossRefGoogle Scholar
Volonteri, M., & Rees, M. J. 2005, ApJ, 633, 624CrossRefGoogle Scholar
Wang, S. X., et al. 2013, ApJ, 778, 179CrossRefGoogle Scholar
Wayth, R. B., et al. 2015, PASA, 32, e025Google Scholar
Weiß, A., et al. 2013, ApJ, 767, 88Google Scholar
Werf, P. P. v. d., et al. 2011, ApJ, 741, L38CrossRefGoogle Scholar
Wilson, W. E., et al. 2011, MNRAS, 416, 832Google Scholar
Wilson, D., et al. 2017, ApJ, 848, 30CrossRefGoogle Scholar
Zeimann, G. R., White, R. L., Becker, R. H., Hodge, J. A., Stanford, S. A., & Richards, G. T. 2011, ApJ, 736, 57CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The GLEAMing of the first supermassive black holes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The GLEAMing of the first supermassive black holes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The GLEAMing of the first supermassive black holes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *