Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-dnb4q Total loading time: 0.809 Render date: 2022-07-05T20:08:15.134Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The FAST Ultra-Deep Survey (FUDS): Observational strategy, calibration and data reduction

Published online by Cambridge University Press:  26 April 2022

Hongwei Xi
Affiliation:
CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Datun Rd., Chaoyang District, Beijing 100101, China International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Melbourne, Australia
Bo Peng*
Affiliation:
CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Datun Rd., Chaoyang District, Beijing 100101, China
Lister Staveley-Smith
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Melbourne, Australia
Bi-Qing For
Affiliation:
International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Melbourne, Australia
Bin Liu
Affiliation:
CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Datun Rd., Chaoyang District, Beijing 100101, China
*
Corresponding author: Bo Peng, email: pb@nao.cas.cn.

Abstract

The FAST Ultra-Deep Survey (FUDS) is a blind survey that aims for the direct detection of H i in galaxies at redshifts $z<0.42$ . The survey uses the multibeam receiver on the Five-hundred-metre Aperture Spherical Telescope (FAST) to map six regions, each of size $0.72\ \textrm{deg}^2$ at high sensitivity ( ${\sim}50\,\mu \textrm{Jy}$ ) and high-frequency resolution (23 kHz). The survey will enable studies of the evolution of galaxies and their H i content with an eventual sample size of ${\sim}1\,000$ . We present the science goals, observing strategy, the effects of radio frequency interference at the FAST site, our mitigation strategies and the methods for calibration, data reduction and imaging as applied to initial data. The observations and reductions for the first field, FUDS0, are completed, with around 128 H i galaxies detected in a preliminary analysis. Example spectra are given in this paper, including a comparison with data from the overlapping GAL2577 field of Arecibo Ultra-Deep Survey.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astropy Collaboration, et al. 2013, A&A, 558, A33 CrossRefGoogle Scholar
Astropy Collaboration, et al. 2018, AJ, 156, 123 Google Scholar
Baker, A. J., Blyth, S., Holwerda, B. W., & LADUMA Team. 2018, in American Astronomical Society Meeting Abstracts, Vol. 231, American Astronomical Society Meeting Abstracts #231, 231.07Google Scholar
Barnes, D. G., et al. 2001, MNRAS, 322, 486 Google Scholar
Becker, R. H., White, R. L., & Edwards, A. L. 1991, ApJS, 75, 1 Google Scholar
Blyth, S., et al. 2016, in MeerKAT Science: On the Pathway to the SKA, 4Google Scholar
Busekool, E., et al. 2021, MNRAS, 501, 2608 CrossRefGoogle Scholar
Butcher, Z., Schneider, S., van Driel, W., & Lehnert, M. D. 2018, A&A, 619, A89 Google Scholar
Calabretta, M. R., Staveley-Smith, L., & Barnes, D. G. 2014, PASA, 31, e007 Google Scholar
Catinella, B., & Cortese, L. 2015, MNRAS, 446, 3526 CrossRefGoogle Scholar
Chang, T.-C., Pen, U.-L., Bandura, K., & Peterson, J. B. 2010, Natur, 466, 463 CrossRefGoogle Scholar
Chengalur, J. N., Braun, R., & Wieringa, M. 2001, A&A, 372, 768 CrossRefGoogle Scholar
Cohen, A. S., et al. 2007, AJ, 134, 1245 CrossRefGoogle Scholar
Condon, J. J., et al. 1998, AJ, 115, 1693 CrossRefGoogle Scholar
Davé, R., Rafieferantsoa, M. H., Thompson, R. J., & Hopkins, P. F. 2017, MNRAS, 467, 115 Google Scholar
Delhaize, J., Meyer, M. J., Staveley-Smith, L., & Boyle, B. J. 2013, MNRAS, 433, 1398 Google Scholar
Donley, J. L., et al. 2005, AJ, 129, 220 Google Scholar
Douglas, J. N., Bash, F. N., Bozyan, F. A., Torrence, G. W., & Wolfe, C. 1996, AJ, 111, 1945 Google Scholar
Fanti, C., Fanti, R., Ficarra, A., & Padrielli, L. 1974, A&AS, 18, 147 Google Scholar
Fernández, X., et al. 2016, ApJ, 824, L1 Google Scholar
Freudling, W., et al. 2011, ApJ, 727, 40 CrossRefGoogle Scholar
Giovanelli, R., et al. 2005, AJ, 130, 2598 CrossRefGoogle Scholar
Grasha, K., Darling, J., Leroy, A. K., & Bolatto, A. D. 2020, MNRAS, 498, 883 Google Scholar
Gregory, P. C., & Condon, J. J. 1991, ApJS, 75, 1011 CrossRefGoogle Scholar
Hickish, J., et al. 2016, JAI, 5, 1641001 Google Scholar
Hoppmann, L., et al. 2015, MNRAS, 452, 3726 CrossRefGoogle Scholar
Jarvis, M., et al. 2016, in MeerKAT Science: On the Pathway to the SKA, 6Google Scholar
Jiang, P., et al. 2019, SCPMA, 62, 959502 Google Scholar
Jiang, P., et al. 2020, RAA, 20, 064 Google Scholar
Jones, D. H., Peterson, B. A., Colless, M., & Saunders, W. 2006, MNRAS, 369, 25 CrossRefGoogle Scholar
Jones, M. G., Haynes, M. P., Giovanelli, R., & Moorman, C. 2018, MNRAS, 477, 2 Google Scholar
Jones, M. G., Haynes, M. P., Giovanelli, R., & Papastergis, E. 2016a, MNRAS, 455, 1574 Google Scholar
Jones, M. G., Papastergis, E., Haynes, M. P., & Giovanelli, R. 2015, MNRAS, 449, 1856 CrossRefGoogle Scholar
Jones, M. G., Papastergis, E., Haynes, M. P., & Giovanelli, R. 2016b, MNRAS, 457, 4393 Google Scholar
Kim, H.-S., et al. 2015, MNRAS, 453, 2315 Google Scholar
Koribalski, B. S., et al. 2020, Ap&SS, 365, 118 Google Scholar
Lah, P., et al. 2007, MNRAS, 376, 1357 Google Scholar
Lake, S. E., & Wright, E. L. 2016, OJA, 1, 3 Google Scholar
Levi, M., et al. 2019, BAAS, 51, 57 Google Scholar
Li, D., et al. 2018, IEEE MM, 19, 112Google Scholar
Lilly, S. J., Le Fevre, O., Hammer, F., & Crampton, D. 1996, ApJ, 460, L1 CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M. 1998, ApJ, 498, 106 CrossRefGoogle Scholar
Martin, A. M., et al. 2010, ApJ, 723, 1359 Google Scholar
Masui, K. W., et al. 2013, ApJ, 763, L20 Google Scholar
McNaught-Roberts, T., et al. 2014, MNRAS, 445, 2125 CrossRefGoogle Scholar
Meyer, M., Heald, G., & Serra, P. 2009, Proceedings of Panoramic Radio AstronomyGoogle Scholar
Meyer, M. J., et al. 2004, MNRAS, 350, 1195 CrossRefGoogle Scholar
Moorman, C. M., et al. 2014, MNRAS, 444, 3559 Google Scholar
Nan, R., et al. 2011, IJMPD, 20, 989 Google Scholar
Oman, K. A. 2022, MNRAS, 509, 3268 Google Scholar
Pilkington, J. D. H., & Scott, J. F. 1965, MmRAS, 69, 183 Google Scholar
Pisano, D. J., et al. 2011, ApJS, 197, 28 Google Scholar
Prochaska, J. X., & Wolfe, A. M. 2009, ApJ, 696, 1543 CrossRefGoogle Scholar
Rao, S. M., & Turnshek, D. A. 2000, ApJS, 130, 1 Google Scholar
Rhee, J., et al. 2018, MNRAS, 473, 1879 Google Scholar
Rosenberg, J. L., & Schneider, S. E. 2002, ApJ, 567, 247 CrossRefGoogle Scholar
Ruze, J. 1965, IEEE TAP, 13, 660CrossRefGoogle Scholar
Said, K., Kraan-Korteweg, R. C., & Staveley-Smith, L. 2019, MNRAS, 486, 1796 CrossRefGoogle Scholar
Schechter, P. 1976, ApJ, 203, 297 CrossRefGoogle Scholar
Schmidt, M. 1968, ApJ, 151, 393 CrossRefGoogle Scholar
Springob, C. M., Haynes, M. P., & Giovanelli, R. 2005, ApJ, 621, 215 Google Scholar
Staveley-Smith, L., et al. 2016, AJ, 151, 52 CrossRefGoogle Scholar
Staveley-Smith, L., et al. 1996, PASA, 13, 243 CrossRefGoogle Scholar
Westmeier, T., Jurek, R., Obreschkow, D., Koribalski, B. S., & Staveley-Smith, L. 2014, MNRAS, 438, 1176 CrossRefGoogle Scholar
Wilson, T. L., Rohlfs, K., & Hüttemeister, S. 2013, Tools of Radio Astronomy, doi: 10.1007/978-3-642-39950-3 Google Scholar
Xi, H., et al. 2021, MNRAS, 501, 4550 Google Scholar
Zhang, K., et al. 2019, SCPMA, 62, 959506 Google Scholar
Zwaan, M. A., Meyer, M. J., Staveley-Smith, L., & Webster, R. L. 2005, MNRAS, 359, L30 CrossRefGoogle Scholar
Zwaan, M. A., van Dokkum, P. G., & Verheijen, M. A. W. 2001, Sci, 293, 1800 CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The FAST Ultra-Deep Survey (FUDS): Observational strategy, calibration and data reduction
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The FAST Ultra-Deep Survey (FUDS): Observational strategy, calibration and data reduction
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The FAST Ultra-Deep Survey (FUDS): Observational strategy, calibration and data reduction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *