Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-gzklw Total loading time: 0.352 Render date: 2021-06-23T19:02:21.969Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax cluster

Published online by Cambridge University Press:  23 April 2021

C. S. Anderson
Affiliation:
Jansky fellow of the National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 USA CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
G. H. Heald
Affiliation:
CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia
J. A. Eilek
Affiliation:
National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801, USA Physics Department, New Mexico Tech, Socorro, NM 87801, USA
E. Lenc
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
B. M. Gaensler
Affiliation:
Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
Lawrence Rudnick
Affiliation:
Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 USA
C. L. Van Eck
Affiliation:
Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
S. P. O’Sullivan
Affiliation:
School of Physical Sciences and center for Astrophysics & Relativity, Dublin City University, Glasnevin, D09 W6Y4, Ireland
J. M. Stil
Affiliation:
Department of Physics & Astronomy, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
A. Chippendale
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
C. J. Riseley
Affiliation:
CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
E. Carretti
Affiliation:
INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
J. West
Affiliation:
Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
J. Farnes
Affiliation:
Oxford e-Research center (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK
L. Harvey-Smith
Affiliation:
Faculty of Science, UNSW Sydney, NSW 2052, Australia School of Computer, Data and Mathematical Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
N. M. McClure-Griffiths
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia
Douglas C. J. Bock
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
J. D. Bunton
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
B. Koribalski
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
C. D. Tremblay
Affiliation:
CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia
M. A. Voronkov
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
K. Warhurst
Affiliation:
CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia
Corresponding
E-mail address:

Abstract

We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$-steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m−2 within 1$^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be a singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.

Type
Research Article
Copyright
© The Author(s) 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Akahori, T., Ideguchi, S., Aoki, T., Takefuji, K., Ujihara, H., & Takahashi, K. 2018, PASJ, 70, 115Google Scholar
Anderson, C. 2016, PhD thesis, The University of SydneyGoogle Scholar
Anderson, C. S., Gaensler, B. M., Feain, I. J., & Franzen, T. M. O. 2015, ApJ, 815, 49CrossRefGoogle Scholar
Anderson, C. S., Gaensler, B. M., Heald, G. H., O’Sullivan, S. P., Kaczmarek, J. F., & Feain, I. J. 2018, ApJ, 855, 41CrossRefGoogle Scholar
Banfield, J. K., Schnitzeler, D. H. F. M., George, S. J., Norris, R. P., Jarrett, T. H., Taylor, A. R., & Stil, J. M. 2014, MNRAS, 444, 700 CrossRefGoogle Scholar
Berg, M. A., et al. 2019, ApJ, 883, 5CrossRefGoogle Scholar
Bertin, E., Mellier, Y., Radovich, M., Missonnier, G., Didelon, P., & Morin, B. 2002, in Astronomical Data Analysis Software and Systems XI, ed. Bohlender, D. A., Durand, D., & Handley, T. H., Astronomical Society of the Pacific Conference Series Vol. 281, 228Google Scholar
Bock, D. C. J., Large, M. I., & Sadler, E. M. 1999, AJ, 117, 1578CrossRefGoogle Scholar
Böhringer, H., Chon, G., & Kronberg, P. P. 2016, A&A, 596, A22Google Scholar
Bonafede, A., et al. 2009, A&A, 503, 707 Google Scholar
Bonafede, A., Govoni, F., Feretti, L., Murgia, M., Giovannini, G., & Brüggen, M. 2011, A&A, 560, A24Google ScholarPubMed
Bonafede, A., et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 95 (arXiv:1501.00321)Google Scholar
Botteon, A., et al. 2020, MNRAS, 499, L11Google Scholar
Brentjens, M. A., & de Bruyn, A. G. 2005, A&A, 441, 1217 Google Scholar
Brüggen, M., Bykov, A., Ryu, D., & RÖttgering, H. 2011, Space Science Reviews, 166, 187213 CrossRefGoogle Scholar
Briggs, D. S., 1995, in American Astronomical Society Meeting Abstracts, 1444 Google Scholar
Brookes, M. H., Best, P. N., Peacock, J. A., RÖttgering, H. J. A., & Dunlop, J. S. 2008, MNRAS, 385, 1297 CrossRefGoogle Scholar
Burn, B. J., 1966, MNRAS, 133, 67 CrossRefGoogle Scholar
Caso, J. P., & Richtler, T. 2015, A&A, 584, A125 Google Scholar
Chippendale, A., & Anderson, C. 2019, On-dish calibration of XY phase for ASKAP’s phased array feeds, https://www.atnf.csiro.au/projects/askap/ACES-memos. Commonwealth Scientific and Industrial Research Organisation, https://www.atnf.csiro.au/projects/askap/ACES-memosGoogle Scholar
Churazov, E., Gilfanov, M., Forman, W., & Jones, C. 1999, The Astrophysical Journal, 520, 105 CrossRefGoogle Scholar
Clarke, T. E., Kronberg, P. P., & Böhringer, H. 2001, ApJ, 547, L111CrossRefGoogle Scholar
Condon, J. J., Cotton, W. D., Greisen, E.W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693 CrossRefGoogle Scholar
Conway, R. G., Haves, P., Kronberg, P. P., Stannard, D., Vallee, J. P., & Wardle, J. F. C. 1974, MNRAS, 168 Google Scholar
Cooper, B. F. C., & Price, R. M. 1962, Nature, 196, 761 Google Scholar
Davé, R., et al. 2001, ApJ, 552, 473 CrossRefGoogle Scholar
Davé, R., Oppenheimer, B. D., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2010, MNRAS, 408, 2051 CrossRefGoogle Scholar
De Breuck, C., Tang, Y., de Bruyn, A. G., Röttgering, H., & van Breugel, W. 2002, A&A, 394, 59 Google Scholar
DeBoer, D. R., et al. 2009, IEEE Proceedings, 97, 1507 CrossRefGoogle Scholar
Donnert, J., Vazza, F., Brüggen, M., & ZuHone, J. 2018, Space Sci. Rev, 214, 122 CrossRefGoogle Scholar
Drinkwater, M. J., Gregg, M. D., & Colless, M. 2001, ApJ, 548, L139Google Scholar
Dursi, L. J., & Pfrommer, C. 2008, ApJ, 677, 993 CrossRefGoogle Scholar
Ekers, R. D., Goss, W. M., Wellington, K. J., Bosma, A., Smith, R. M., & Schweizer, F. 1983, A&A, 127, 361Google Scholar
Farnes, J. S., Gaensler, B. M., Purcell, C., Sun, X. H., Haverkorn, M., Lenc, E., O’Sullivan, S. P., & Akahori, T. 2017, MNRAS, 467, 4777 Google Scholar
Farnsworth, D., Rudnick, L., & Brown, S. 2011, AJ, 141, 191 CrossRefGoogle Scholar
Feain, I. J., et al. 2009, ApJ, 707, 114 CrossRefGoogle Scholar
Gaensler, B. M., Beck, R., & Feretti, L. 2004, New Astron. New Astron. Rev, 48, 1003 CrossRefGoogle Scholar
Gaensler, B. M., Landecker, T. L., Taylor, A. R., & POSSUM Collaboration, 2010, in American Astronomical Society Meeting Abstracts #215, 515 Google Scholar
Gaensler, B., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 103 Google Scholar
Gauthier, J.-R., Chen, H.-W., & Tinker, J. L. 2010, ApJ, 716, 1263 CrossRefGoogle Scholar
Gendre, M. A., & Wall, J. V. 2008, MNRAS, 390, 819 Google Scholar
Girardi, M., et al. 2016, MNRAS, 456, 2829 CrossRefGoogle Scholar
Govoni, F., Murgia, M., Feretti, L., Giovannini, G., Dallacasa, D., & Taylor, G. B. 2005, A&A, 430, L5Google Scholar
Govoni, F., et al. 2010, A&A, 522, A105 Google Scholar
Govoni, F., et al. 2017, A&A, 603, A122Google Scholar
Govoni, F., et al. 2019, Science, 364, 981 CrossRefGoogle Scholar
Gregory, P. C., Vavasour, J. D., Scott, W. K., & Condon, J. J. 1994, ApJS, 90, 173 CrossRefGoogle Scholar
Gruszecki, M., Nakariakov, V. M., Van Doorsselaere, T., & Arber, T. D. 2010, Phys. Rev. Lett., 105, 055004 Google Scholar
Guidetti, D., Laing, R. A., Murgia, M., Govoni, F., Gregorini, L., & Parma, P. 2010, A&A, 514, A50Google Scholar
Guidetti, D., Laing, R. A., Bridle, A. H., Parma, P., & Gregorini, L. 2011, MNRAS, 413, 2525 CrossRefGoogle Scholar
Guidetti, D., Laing, R. A., Croston, J. H., Bridle, A. H., & Parma, P. 2012, MNRAS, 423, 1335 CrossRefGoogle Scholar
Haan, S., & Braun, R. 2014, MNRAS, 440, L21 CrossRefGoogle Scholar
Hales, C. A., Gaensler, B. M., Norris, R. P., & Middelberg, E. 2012, MNRAS, 424, 2160 CrossRefGoogle Scholar
Hales, C. A., Norris, R. P., Gaensler, B. M., & Middelberg, E. 2014, MNRAS, 440, 3113 CrossRefGoogle Scholar
Hammond, A. M., Robishaw, T., & Gaensler, B. M. 2012, preprint, (arXiv:1209.1438)Google Scholar
Hancock, P. J., Murphy, T., Gaensler, B. M., Hopkins, A., & Curran, J. R. 2012, MNRAS, 422, 1812 CrossRefGoogle Scholar
Hancock, P. J., Trott, C. M., & Hurley-Walker, N. 2018, PASA, 35, e011CrossRefGoogle Scholar
Heald, G., Braun, R., & Edmonds, R. 2009, A&A, 503, 409 Google Scholar
Heald, G., et al. 2020, Galaxies, 8, 53 CrossRefGoogle Scholar
Heiles, C., & Haverkorn, M. 2012, Space Sci. Rev., 166, 293 CrossRefGoogle Scholar
Heywood, I., Jarvis, M. J., & Condon, J. J. 2013, MNRAS, 432, 2625 CrossRefGoogle Scholar
Hong, S. E., Jeong, D., Hwang, H. S., & Kim, J. 2020, arXiv e-prints, p. arXiv:2008.01738Google Scholar
Hurley-Walker, N., et al. 2017, MNRAS, 464, 1146 CrossRefGoogle Scholar
Hutschenreuter, S., & Enßlin, T. A. 2020, A&A, 633, A150Google Scholar
Indermuehle, B. T., Harvey-Smith, L., Marquarding, M., & Reynolds, J. 2018, in Observatory Operations: Strategies, Processes, and Systems VII, 107042S, doi: 10.1117/12.2311917 CrossRefGoogle Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78Google Scholar
Iodice, E., et al. 2017, ApJ, 839, 21 CrossRefGoogle Scholar
Iodice, E., et al. 2019, A&A, 623, A1Google Scholar
Johnson, A. R., Rudnick, L., Jones, T. W., Mendygral, P. J., & Dolag, K. 2020, ApJ, 888, 101 CrossRefGoogle Scholar
Johnston-Hollitt, M., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 92Google Scholar
Johnston, S., et al. 2007, PASA, 24, 174 CrossRefGoogle Scholar
Jonas, J. L. 2009, IEEE Proceedings, 97, 1522 CrossRefGoogle Scholar
Jones, C., Stern, C., Forman, W., Breen, J., David, L., Tucker, W., & Franx, M. 1997, ApJ, 482, 143 CrossRefGoogle Scholar
Keshet, U., Markevitch, M., Birnboim, Y., & Loeb, A. 2010, ApJ, 719, L74CrossRefGoogle Scholar
Keshet, U., Kushnir, D., Loeb, A., & Waxman, E. 2017, ApJ, 845, 24 Google Scholar
Killeen, N. E. B., Bicknell, G. V., & Ekers, R. D. 1988, ApJ, 325, 180 CrossRefGoogle Scholar
Komossa, S., & Böhringer, H. 1999, A&A, 344, 755Google Scholar
Kronberg, P. P., & Simard-Normandin, M., 1976, Nature, 263, 653 CrossRefGoogle Scholar
Lacy, M., Chandler, C., Kimball, A., Myers, S., Nyland, K., & Witz, S. 2019, in Astronomical Data Analysis Software and Systems XXVII, P. J. Teuben, M. W. Pound, B. A. Thomas, & E. M. Warner, ed. Astronomical Society of the Pacific Conference Series, Vol. 523, 217 Google Scholar
Laing, R. A., Bridle, A. H., Parma, P., & Murgia, M. 2008, MNRAS, 391, 521 CrossRefGoogle Scholar
Lan, T.-W., & Fukugita, M. 2017, ApJ, 850, 156 CrossRefGoogle Scholar
Lane, W. M., Cotton, W. D., van Velzen, S., Clarke, T. E., Kassim, N. E., Helmboldt, J. F., Lazio, T. J. W., & Cohen, A. S., 2014, MNRAS, 440, 327 CrossRefGoogle Scholar
Large, M. I., Mills, B. Y., Little, A. G., Crawford, D. F., & Sutton, J. M. 1981, MNRAS, 194, 693 CrossRefGoogle Scholar
Lavaux, G., & Hudson, M. J. 2011, MNRAS, 416, 2840 CrossRefGoogle Scholar
Lenc, E., et al. 2017, PASA, 34, e040CrossRefGoogle Scholar
Liang, C. J., & Remming, I. 2020, MNRAS, 491, 5056 CrossRefGoogle Scholar
Lienhard, J. 1966, Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders. Bulletin (Washington State University. College of Engineering. Research Division), Technical Extension Service,Washington State University, https://books.google.com/books? id=qSlQGgAACAAJGoogle Scholar
Locatelli, N., Vazza, F., & Domínguez-Fernández, P. 2018, Galaxies, 6, 128 CrossRefGoogle Scholar
Lyutikov, M. 2006, MNRAS, 373, 73 CrossRefGoogle Scholar
Ma, Y. K., Mao, S. A., Stil, J., Basu, A., West, J., Heiles, C., Hill, A. S., & Betti, S. K. 2019, MNRAS, 487, 3454 CrossRefGoogle Scholar
Machacek, M. E., Nulsen, P., Stirbat, L., Jones, C., & Forman, W. R. 2005, ApJ, 630, 280 CrossRefGoogle Scholar
Macquart, J.-P., Ekers, R. D., Feain, I., & Johnston-Hollitt, M. 2012, ApJ, 750, 139 CrossRefGoogle Scholar
Macquart, J. P., et al. 2020, Nature, 581, 391 CrossRefGoogle Scholar
Maddox, N., Serra, P., Venhola, A., Peletier, R., Loubser, I., & Iodice, E. 2019, MNRAS, 490, 1666 CrossRefGoogle Scholar
Magliocchetti, M., Maddox, S. J., Wall, J. V., Benn, C. R., & Cotter, G. 2000, MNRAS, 318, 1047 CrossRefGoogle Scholar
Marinacci, F., et al. 2018, MNRAS, 480, 5113 Google Scholar
Markevitch, M., & Vikhlinin, A. 2007, Phys. Rep., 443, 1 CrossRefGoogle Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G., & Sadler, E. M. 2003, MNRAS, 342, 1117 CrossRefGoogle Scholar
McClure-Griffths, N. M., et al. 2009, ApJS, 181, 398 CrossRefGoogle Scholar
McConnell, D., Sadler, E. M., Murphy, T., & Ekers, R. D. 2012, MNRAS, 422, 1527 Google Scholar
McConnell, D., et al. 2016, PASA, 33, e042Google Scholar
McConnell, D., et al. 2020, PASA, 37, e048CrossRefGoogle Scholar
McGill, R., Tukey, J. W., & Larsen, W. A. 1978, The American Statistician, 32, 12 Google Scholar
McMullin, J. P.,Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, CASA Architecture and Applications, 127 Google Scholar
Merloni, A., et al. 2012, arXiv e-prints, p. arXiv:1209.3114Google Scholar
Murgia, M., Govoni, F., Feretti, L., Giovannini, G., Dallacasa, D., Fanti, R., Taylor, G. B., & Dolag, K. 2004, A&A, 424, 429 Google Scholar
Murphy, T., et al. 2010, MNRAS, 402, 2403 CrossRefGoogle Scholar
Nasonova, O. G., de Freitas Pacheco, J. A., & Karachentsev, I. D. 2011, A&A, 532, A104Google Scholar
Nicastro, F., Krongold, Y., Mathur, S., & Elvis, M. 2017, Astronomische Nachrichten, 338, 281 CrossRefGoogle Scholar
Nikogossyan, E., Durret, F., Gerbal, D., & Magnard, F. 1999, A&A, 349, 97 Google Scholar
Norris, R. P., et al. 2011, PASA, 28, 215 CrossRefGoogle Scholar
Norris, R. P., et al. 2021, PASA, 38, e003 CrossRefGoogle Scholar
O’Sullivan, S. P., et al. 2013, ApJ, 764, 162 CrossRefGoogle Scholar
O’Sullivan, S. P., et al. 2020, arXiv e-prints, p. arXiv:2002.06924Google Scholar
O_ringa, A. R., McKinley, B., Hurley-Walker, , et al. 2014, MNRAS, 444, 606 CrossRefGoogle Scholar
Padovani, P., 2016, A&A. Rev, 24, 13 Google Scholar
Paolillo, M., Fabbiano, G., Peres, G., & Kim, D.-W. 2002, ApJ, 565, 883 CrossRefGoogle Scholar
Perley, R. A., Bridle, A. H., & Willis, A. G. 1984, ApJS, 54, 291 CrossRefGoogle Scholar
Pfrommer, C., & Dursi, L. J. 2010, Nature Physics, 6, 520 Google Scholar
Planck Collaboration et al. 2016, A&A, 594, A13 Google Scholar
Pradeep, J., Narayanan, A., Muzahid, S., Nagai, D., Charlton, J. C., & Srianand, R. 2019, MNRAS, 488, 5327 CrossRefGoogle Scholar
Prochaska, J. X., et al. 2013, ApJ, 776, 136 CrossRefGoogle Scholar
Riseley, C. J., et al. 2018, PASA, 35, 43 CrossRefGoogle Scholar
Riseley, C. J., et al. 2020, PASA, 37, e029Google Scholar
Rudnick, L., & Owen, F. N. 2014a, ApJ, 785, 45 CrossRefGoogle Scholar
Rudnick, L., & Owen, F. N. 2014b, ApJ, 786, 160 CrossRefGoogle Scholar
Rudnick, L., Brown, S., & Williams, L. R. 2007, ApJ, 671, 40 CrossRefGoogle Scholar
Sakamoto, H., & Haniu, H. 1990, J. Fluids Eng., 112, 386 CrossRefGoogle Scholar
Sarazin, C. L. 2002, The Physics of Cluster Mergers, 138, doi: 10.1007/0-306-48096-4_1 CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Data Analysis Software and Systems IV, ed.Google Scholar
Scharf, C. A., Zurek, D. R., & Bureau, M. 2005, ApJ, 633, 154 CrossRefGoogle Scholar
Schinckel, A. E. T., & Bock, D. C.-J. 2016, in Proc. SPIE Ground-based and Airborne Telescopes VI, 99062A, doi: 10.1117/12.2233920 CrossRefGoogle Scholar
Serra, P., et al. 2016, in MeerKAT Science: On the Pathway to the SKA, 8 (arXiv:1709.01289)Google Scholar
Shaw, R. A., Payne, H. E., & Hayes, J. J. E. Astronomical Society of the Pacific Conference Series, Vol. 77, 433 (arXiv:astro-ph/0612759)Google Scholar
Sheardown, A., et al. 2018, ApJ, 865, 118 Google Scholar
Shimwell, T. W., et al. 2017, A&A, 598, A104Google Scholar
Stil, J. M., Keller, B. W., George, S. J., & Taylor, A. R. 2014, ApJ, 787, 99 CrossRefGoogle Scholar
Stuardi, C., et al. 2020, A&A, 638, A48 Google Scholar
Su, Y., et al. 2017, ApJ, 851, 69 CrossRefGoogle Scholar
Subramanian, K., Shukurov, A., & Haugen, N. E. L. 2006, MNRAS, 366, 1437 CrossRefGoogle Scholar
Tanimura, H., et al. 2019, MNRAS, p. 2717 Google Scholar
Taylor, G. B., & Perley, R. A. 1993, ApJ, 416, 554 CrossRefGoogle Scholar
Taylor, A. R., Stil, J. M., & Sunstrum, C. 2009, ApJ, 702, 1230 CrossRefGoogle Scholar
Thom, C., et al. 2012, ApJ, 758, L41CrossRefGoogle Scholar
Tully, R. B., Pomarède, D., Graziani, R., Courtois, H. M., Hoffman, Y., & Shaya, E. J. 2019, ApJ, 880, 24 CrossRefGoogle Scholar
Vazza, F., Brüggen, M., Gheller, C., & Wang, P. 2014, MNRAS, 445, 3706CrossRefGoogle Scholar
Venhola, A., et al. 2018, A&A, 620, A165Google Scholar
Vernstrom, T., Gaensler, B. M., Rudnick, L., & Andernach, H. 2019, ApJ, 878, 92 Google Scholar
Vikhlinin, A., Markevitch, M., & Murray, S. S. 2001, ApJ, 551, 160 CrossRefGoogle Scholar
Wayth, R. B., et al. 2015, PASA, 32, e025CrossRefGoogle Scholar
Werner, N., McNamara, B. R., Churazov, E., & Scannapieco, E. 2019, Space Sci. Rev., 215, 5 CrossRefGoogle Scholar
Wright, A. E., Grith, M. R., Burke, B. F., & Ekers, R. D., 1994, ApJS, 91, 111 CrossRefGoogle Scholar
Xu, H., Li, H., Collins, D. C., Li, S., & Norman, M. L. 2009, ApJ, 698, L14CrossRefGoogle Scholar
Xu, H., Li, H., Collins, D. C., Li, S., & Norman, M. L. 2011, ApJ, 739, 77 CrossRefGoogle Scholar
Yoon, J. H., Putman, M. E., Thom, C., Chen, H.-W., & Bryan, G. L. 2012, ApJ, 754, 84 CrossRefGoogle Scholar
Zhuravleva, I., Churazov, E., Schekochihin, A. A., Allen, S. W., Vikhlinin, A., & Werner, N. 2019, Nat. Astron., 3, 832 Google Scholar
Zuhone, J. A., & Roediger, E. 2016, J. Plasma Phys., 82, 53280501 CrossRefGoogle Scholar
de Graaff, A., Cai, Y.-C., Heymans, C., & Peacock, J. A. 2019, A&A, 624, A48Google Scholar
de Zotti, G., Massardi, M., Negrello, M., & Wall, J. 2010, A&A. Rev, 18, 1 Google Scholar
vanWeeren, R. J., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Science, 330, 347 CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax cluster
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax cluster
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised gas in the Fornax cluster
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *