Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.399 Render date: 2022-08-07T19:45:42.175Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers

Published online by Cambridge University Press:  02 December 2020

Ziteng Wang*
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, New South Wales2006, Australia CSIRO Astronomy and Space Science, PO Box 76, Epping, New South Wales1710, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, Victoria, Australia
Tara Murphy
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, New South Wales2006, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, Victoria, Australia
David L. Kaplan
Affiliation:
Center for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI53201, USA
Keith W. Bannister
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, New South Wales1710, Australia
Dougal Dobie
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, New South Wales2006, Australia CSIRO Astronomy and Space Science, PO Box 76, Epping, New South Wales1710, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, Victoria, Australia
*
Author for correspondence: Ziteng Wang, E-mail: ziteng.wang@sydney.edu.au

Abstract

We discuss observational strategies to detect prompt bursts associated with gravitational wave (GW) events using the Australian Square Kilometre Array Pathfinder (ASKAP). Many theoretical models of binary neutron stars mergers predict that bright, prompt radio emission would accompany the merger. The detection of such prompt emission would greatly improve our knowledge of the physical conditions, environment, and location of the merger. However, searches for prompt emission are complicated by the relatively poor localisation for GW events, with the 90% credible region reaching hundreds or even thousands of square degrees. Operating in fly’s eye mode, the ASKAP field of view can reach $\sim1\,000$ deg$^2$ at $\sim$$888\,{\rm MHz}$. This potentially allows observers to cover most of the 90% credible region quickly enough to detect prompt emission. We use skymaps for GW170817 and GW190814 from LIGO/Virgo’s third observing run to simulate the probability of detecting prompt emission for GW events in the upcoming fourth observing run. With only alerts released after merger, we find it difficult to slew the telescope sufficiently quickly as to capture any prompt emission. However, with the addition of alerts released before merger by negative-latency pipelines, we find that it should be possible to search for nearby, bright prompt fast radio burst-like emission from GW events. Nonetheless, the rates are low: we would expect to observe $\sim$0.012 events during the fourth observing run, assuming that the prompt emission is emitted microseconds around the merger.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aasi, J., et al. 2015, CQG, 32, 115012Google Scholar
Abbott, B. P., et al. 2017a, PhRvL, 119, 161101Google Scholar
Abbott, B. P., et al. 2017b, ApJ, 848, L13Google Scholar
Abbott, B. P., et al. 2018, LRvR, 21, 3Google Scholar
Abbott, B. P., et al. 2019, PhRvX, 9, 031040Google Scholar
Abbott, R., et al. 2020, ApJ, 896, L44Google Scholar
Acernese, F., et al. 2014, CQG, 32, 024001Google Scholar
Adams, T., et al. 2016, CQG, 33, 175012Google Scholar
Anderson, M. M., et al. 2018, ApJ, 864, 22Google Scholar
Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., & Yamamoto, H. 2013, PhRvD, 88, 043007Google Scholar
Bannister, K. W., et al. 2017, ApJ, 841, L12Google Scholar
Bannister, K. W., et al. 2019, Sci, 365, 565Google Scholar
Bochenek, C. D., Ravi, V., Belov, K. V., Hallinan, G., Kocz, J., Kulkarni, S. R., & McKenna, D. L. 2020, Natur, submitted,Google Scholar
Callister, T., Kanner, J., & Weinstein, A. 2016, ApJ, 825, L12Google Scholar
Callister, T. A., et al. 2019, ApJ, 877, L39Google Scholar
Cannon, K., et al. 2012, ApJ, 748, 136Google Scholar
Cao, X.-F., Yu, Y.-W., & Zhou, X. 2018, ApJ, 858, 89Google Scholar
Chatterjee, D., Ghosh, S., Brady, P. R., Kapadia, S. J., Miller, A. L., Nissanke, S., & Pannarale, F. 2020, ApJ, 896, 54Google Scholar
Chawla, P., et al. 2017, ApJ, 844, 140Google Scholar
Chawla, P., et al. 2020, arXiv e-prints, in press,Google Scholar
Chu, Q., Howell, E. J., Rowlinson, A., Gao, H., Zhang, B., Tingay, S. J., Boër, M., & Wen, L., 2016, MNRAS, 459, 121Google Scholar
Cordes, J. M., & Chatterjee, S. 2019, ARA&A, 57, 417Google Scholar
Dal Canton, T., & Harry, I. W. 2017, arXiv e-prints, p.Google Scholar
Dobie, D., Murphy, T., Kaplan, D. L., Ghosh, S., Bannister, K. W., & Hunstead, R. W. 2019a, PASA, 36, e019Google Scholar
Dobie, D., et al. 2019b, ApJ, 887, L13Google Scholar
Fairhurst, S. 2009, NJPh, 11, 123006Google Scholar
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137Google Scholar
Hansen, B. M. S., & Lyutikov, M. 2001, MNRAS, 322, 695Google Scholar
Hooper, S., Chung, S. K., Luan, J., Blair, D., Chen, Y., & Wen, L. 2012a, PhRvD, 86, 024012Google Scholar
Hooper, S., et al. 2012b, JPhCS, 363, 012027Google Scholar
James, C. W., Anderson, G. E., Wen, L., Bosveld, J., Chu, Q., Kovalam, M., Slaven-Blair, T. J., & Williams, A. 2019b, MNRAS, 489, L75Google Scholar
James, C. W., Ekers, R. D., Macquart, J. P., Bannister, K. W., & Shannon, R. M. 2019a, MNRAS, 483, 1342Google Scholar
Johnston, S., et al. 2008, ExA, 22, 151Google Scholar
Kaplan, D. L., et al. 2015, ApJ, 814, L25Google Scholar
Kaplan, D. L., Murphy, T., Rowlinson, A., Croft, S. D., Wayth, R. B., & Trott, C. M. 2016, PASA, 33, e050Google Scholar
Lai, D. 2012, ApJ, 757, L3Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration et al. 2019, GCN, 25324, 1Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Sci, 318, 777Google Scholar
Lu, W., Kumar, P., & Narayan, R. 2019, MNRAS, 483, 359Google Scholar
Lu, W., & Piro, A. L. 2019, ApJ, 883, 40Google Scholar
Lyutikov, M. 2013, ApJ, 768, 63Google Scholar
Macquart, J. P., & Ekers, R. D. 2018, MNRAS, 474, 1900Google Scholar
Macquart, J.-P., et al. 2010, PASA, 27, 272--282Google Scholar
Margalit, B., Beniamini, P., Sridhar, N., & Metzger, B. D. 2020, ApJ, submitted,Google Scholar
Mereghetti, S., et al. 2020a, arXiv e-prints, p. arXiv:2005.06335Google Scholar
Mereghetti, S., Savchenko, V., Gotz, D., Ducci, L., Ferrigno, C., Bozzo, E., Borkowski, J., & Bazzano, A. 2020b, GRBCN, 27668, 1Google Scholar
Messick, C., et al. 2017, PhRvD, 95, 042001Google Scholar
Metzger, B. D., & Zivancev, C. 2016, MNRAS, 461, 4435Google Scholar
Mingarelli, C. M. F., Levin, J., & Lazio, T. J. W. 2015, ApJ, 814, L20Google Scholar
Nitz, A. H., Dal Canton, T., Davis, D., & Reyes, S. 2018, PhRvD, 98, 024050Google Scholar
Pilia, M., et al. 2020, ApJ, 896, L40Google Scholar
Pshirkov, M., & Postnov, K. 2010, Ap&SS, 330, 13Google Scholar
Ravi, V. 2019, NatAs, 3, 928Google Scholar
Ravi, V., & Lasky, P. D. 2014, MNRAS, 441, 2433Google Scholar
Ridnaia, A., et al. 2020a, arXiv e-prints, p. arXiv:2005.11178Google Scholar
Ridnaia, A., et al. 2020b, GRBCN, 27669, 1Google Scholar
Rowlinson, A., & Anderson, G. E. 2019, MNRAS,489, 3316Google Scholar
Rowlinson, A., et al. 2016, MNRAS, 458, 3506Google Scholar
Sachdev, S., et al. 2019, PhRvD, submitted, arXiv:1901.08580Google Scholar
Scholz, P., & Chime/Frb Collaboration 2020, ATel, 13681, 1Google Scholar
Shannon, R. M., et al. 2018, Nature, 562, 386Google Scholar
Singer, L. P., & Price, L. R. 2016, PhRvD, PhRvD, 93, 024013Google Scholar
Singer, L. P., et al. 2014, ApJ, 795, 105Google Scholar
Sokolowski, M., et al. 2018, ApJ, 867, L12Google Scholar
Somiya, K. 2012, CQG, 29, 124007Google Scholar
Spitler, L. G., et al. 2016, Natur, 531, 202Google Scholar
Thornton, D., et al. 2013, Sci, 341, 53Google Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007Google Scholar
Tingay, S. J., et al. 2015, AJ, 150, 199Google Scholar
Totani, T. 2013, PASJ, 65Google Scholar
Wang, J.-S., Peng, F.-K., Wu, K., & Dai, Z.-G. 2018, ApJ, 868, 19Google Scholar
Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang, F.-Y. 2016, ApJ, 822, L7Google Scholar
Zhang, S. N., et al. 2020, ATel, 13687, 1Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *