Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T07:42:30.000Z Has data issue: false hasContentIssue false

12CO J = 1 → 0 Observations of the Circinus Galaxy using the Mopra 22 m Radio Telescope

Published online by Cambridge University Press:  16 May 2016

M. Elmouttie
Affiliation:
Physics Department, University of Queensland, Qld 4072, Australia
R. F. Haynes
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australiaelmoutti@physics.uq.edu.au
K. L. Jones
Affiliation:
Physics Department, University of Queensland, Qld 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The J = 1–0 rotational transition of carbon monoxide has been used to trace the molecular gas at five different positions in the Circinus galaxy using the Australia Telescope National Facility's 22 m radio telescope at Mopra. The intensity profile of the central CO emission has a full width at half maximum of 550 pc. The 12CO (1–0) spectrum at the centre of the galaxy has an integrated temperature of 145 K km S−1, with components peaking at 0·62 K and ranging in velocity from 200–600 km S−1. The total mass of molecular gas in the Circinus galaxy, assuming that the CO intensity profile of the galaxy is similar to the radio continuum, is at least 7·5±4·1 × 108 M. This estimate, combined with previously published far infrared data, yields a value for the star-forming efficiency, SFE = 16±9 L M‒1.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Adler, D. S., Lo, K. Y., & Allen, R. J. 1991, ApJ, 382, 475 Google Scholar
Dahlem, M., Golla, G., Whiteoak, J. B., Wielebinski, R., Hüttemeister, S., & Henkel, C. 1993, A&A, 270, 29Google Scholar
Devereux, N. A., & Young, J. S. 1991, ApJ, 371, 515 CrossRefGoogle Scholar
Duric, N., & Seaquist, E. R. 1988, ApJ, 326, 574 CrossRefGoogle Scholar
Elmouttie, M., Haynes, R. F., Jones, K. L., Ehle, M., Beck, R., & Wielebinski, R. 1995, MNRAS, 275, L53CrossRefGoogle Scholar
Frater, R. H., & Brooks, J. W. (eds) 1992, J. Elec. Electron. Eng. Aust., 12, no. 2Google Scholar
Freeman, K. C., et al., 1977, A&A, 55, 445 Google Scholar
Gardner, F. F., & Whiteoak, J. B. 1982, MNRAS, 201, 13PCrossRefGoogle Scholar
Harnett, J. I., Whiteoak, J. B., Reynolds, J. E., Gardner, F. F., & Tzioumis, A. 1990, MNRAS, 244, 130Google Scholar
Helou, G. 1986, ApJ, 311, L33CrossRefGoogle Scholar
Irwin, J. A., & Sofue, Y. 1992, ApJ, 396, L75Google Scholar
Israel, F. P. 1992, A&A, 265, 487 Google Scholar
Marconi, A., Moorwood, A. F. M., Origlia, L., & Oliva, E. 1994, ESO Messenger, No. 78, 20Google Scholar
Moorwood, A. F. M., & Glass, I. S. 1984, A&A, 135, 281 Google Scholar
Oliva, E., Salvati, M., Moorwood, A. F. M., & Marconi, A. 1994, A&A, 288, 457 Google Scholar
Sanders, D. B. 1990, Dynamics of galaxies and their molecular cloud distributions, IAU Symp. 146, ed. F. Combes & F. Casoli, p. 235 Google Scholar
Strong, A. W., et al. 1988, A&A, 207, 1Google Scholar
Thronson, H. A., & Telesco, C. M. 1986, ApJ, 139, 899 Google Scholar
Young, J. S., & Scoville, N. Z. 1991, ARA&A, 29, 581 Google Scholar