Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.226 Render date: 2021-06-14T23:35:15.887Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Iron intake with the risk of breast cancer among Chinese women: a case–control study

Published online by Cambridge University Press:  23 February 2021

Kai-Yan Liu
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Xiao-Li Feng
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Xiong-Fei Mo
Affiliation:
Department of Thyroid and Breast Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou 510080, People’s Republic of China
Fang-Yu Lin
Affiliation:
Nursing Department, Sun Yat-sen University First Affiliated Hospital, Guangzhou 510080, People’s Republic of China
Xin Zhang
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Chu-Yi Huang
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Alinuer Abulimiti
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Lei Li
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Cai-Xia Zhang
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
Corresponding
E-mail address:

Abstract

Objective:

The current study evaluated the associations between different forms and sources of Fe and breast cancer risk in Southern Chinese women.

Design:

Case–control study. We collected data on the consumption of Fe from different forms and food sources by using a validated FFQ. Multivariable logistic regression and restricted cubic spline (RCS) analysis was used to reveal potential associations between Fe intake and breast cancer risk.

Setting:

A case-control study of women at three major hospitals in Guangzhou, China.

Participants:

From June 2007 to March 2019, 1591 breast cancer cases and 1622 age-matched controls were recruited.

Results:

In quartile analyses, Fe from plants and Fe from white meat intake were inversely associated with breast cancer risk, with OR of 0·65 (95 % CI 0·47, 0·89, P trend = 0·006) and 0·76 (95 % CI 0·61, 0·96, P trend = 0·014), respectively, comparing the highest with the lowest quartile. No associations were observed between total dietary Fe, heme or non-heme Fe, Fe from meat or red meat and breast cancer risk. RCS analysis demonstrated J-shaped associations between total dietary Fe, non-heme Fe and breast cancer, and reverse L-shaped associations between heme Fe, Fe from meat and Fe from red meat and breast cancer.

Conclusion:

Fe from plants and white meat were inversely associated with breast cancer risk. Significant non-linear J-shaped associations were found between total dietary Fe, non-heme Fe and breast cancer risk, and reverse L-shaped associations were found between heme Fe, Fe from meat or red meat and breast cancer risk.

Type
Research paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below.

References

Torre, LA, Bray, F, Siegel, RL et al. (2015) Global cancer statistics, 2012. CA Cancer J Clin 65, 87108.CrossRefGoogle ScholarPubMed
De Cicco, P, Catani, MV, Gasperi, V et al. (2019) Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients 11, 1514.CrossRefGoogle ScholarPubMed
Hurrell, R & Egli, I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91, 1461S1467S.CrossRefGoogle ScholarPubMed
Emerit, J, Beaumont, C & Trivin, F (2001) Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother 55, 333339.CrossRefGoogle ScholarPubMed
Toyokuni, S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100, 916.CrossRefGoogle ScholarPubMed
Torti, SV & Torti, FM (2013) Cellular iron metabolism in prognosis and therapy of breast cancer. Crit Rev Oncog 18, 435448.CrossRefGoogle ScholarPubMed
Liehr, JG & Jones, JS (2001) Role of iron in estrogen-induced cancer. Curr Med Chem 8, 839849.CrossRefGoogle ScholarPubMed
Huang, X (2008) Does iron have a role in breast cancer? Lancet Oncol 9, 803807.CrossRefGoogle ScholarPubMed
Kabat, GC & Rohan, TE (2007) Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Causes Control 18, 10471053.CrossRefGoogle ScholarPubMed
Negri, E, La Vecchia, C, Franceschi, S et al. (1996) Intake of selected micronutrients and the risk of breast cancer. Int J Cancer 65, 140144.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Farvid, MS, Cho, E, Chen, WY et al. (2014) Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. BMJ 348, g3437.CrossRefGoogle ScholarPubMed
Cade, J, Thomas, E & Vail, A (1998) Case-control study of breast cancer in south east England: nutritional factors. J Epidemiol Commun Health 52, 105110.CrossRefGoogle Scholar
Moore, AB, Shannon, J, Chen, C et al. (2009) Dietary and stored iron as predictors of breast cancer risk: a nested case-control study in Shanghai. Int J Cancer 125, 11101117.CrossRefGoogle ScholarPubMed
Ferrucci, LM, Cross, AJ, Graubard, BI et al. (2009) Intake of meat, meat mutagens, and iron and the risk of breast cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer 101, 178184.CrossRefGoogle ScholarPubMed
Diallo, A, Deschasaux, M, Partula, V et al. (2016) Dietary iron intake and breast cancer risk: modulation by an antioxidant supplementation. Oncotarget 7, 7900879016.CrossRefGoogle ScholarPubMed
Levi, F, Pasche, C, Lucchini, F et al. (2001) Dietary intake of selected micronutrients and breast-cancer risk. Int J Cancer 91, 260263.3.3.CO;2-R>CrossRefGoogle ScholarPubMed
Adzersen, KH, Jess, P, Freivogel, KW et al. (2003) Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: a case-control study in Germany. Nutr Cancer 46, 131137.CrossRefGoogle ScholarPubMed
Michels, KB, Rosner, BA, Chumlea, WC et al. (2006) Preschool diet and adult risk of breast cancer. Int J Cancer 118, 749754.CrossRefGoogle ScholarPubMed
Hong, CC, Ambrosone, CB, Ahn, J et al. (2007) Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev 16, 17841794.CrossRefGoogle Scholar
Kabat, GC, Miller, AB, Jain, M et al. (2007) Dietary iron and heme iron intake and risk of breast cancer: a prospective cohort study. Cancer Epidemiol Biomark Prev 16, 13061308.CrossRefGoogle ScholarPubMed
Kallianpur, AR, Lee, SA, Gao, YT et al. (2008) Dietary animal-derived iron and fat intake and breast cancer risk in the Shanghai Breast Cancer Study. Breast Cancer Res Treat 107, 123132.CrossRefGoogle ScholarPubMed
Kabat, GC, Cross, AJ, Park, Y et al. (2010) Intakes of dietary iron and heme-iron and risk of postmenopausal breast cancer in the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr 92, 14781483.CrossRefGoogle ScholarPubMed
Bradshaw, PT, Khankari, NK, Teitelbaum, SL et al. (2013) Nutrient pathways and breast cancer risk: the Long Island Breast Cancer Study Project. Nutr Cancer 65, 345354.CrossRefGoogle ScholarPubMed
Farvid, MS, Cho, E, Chen, WY et al. (2015) Adolescent meat intake and breast cancer risk. Int J Cancer 136, 19091920.CrossRefGoogle ScholarPubMed
Chang, VC, Cotterchio, M, Bondy, SJ et al. (2020) Iron intake, oxidative stress-related genes and breast cancer risk. Int J Cancer 147, 13541373.CrossRefGoogle ScholarPubMed
Inoue-Choi, M, Sinha, R, Gierach, GL et al. (2016) Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 138, 16091618.CrossRefGoogle ScholarPubMed
Chang, VC, Cotterchio, M & Khoo, E (2019) Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 19, 543.CrossRefGoogle ScholarPubMed
Zhang, CX, Ho, SC, Chen, YM et al. (2009) Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. Int J Cancer 125, 181188.CrossRefGoogle ScholarPubMed
Zhang, CX, Pan, MX, Li, B et al. (2013) Choline and betaine intake is inversely associated with breast cancer risk: a two-stage case-control study in China. Cancer Sci 104, 250258.CrossRefGoogle ScholarPubMed
Nimptsch, K, Zhang, X, Cassidy, A et al. (2016) Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am J Clin Nutr 103, 184191.CrossRefGoogle ScholarPubMed
Zhang, CX & Ho, SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.Google ScholarPubMed
Yang, YX, Wang, GY & Pan, XC (2002) China Food Composition, 2002. Beijing: Peking University Medical Press.Google Scholar
Balder, HF, Vogel, J, Jansen, MC et al. (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev 15, 717725.CrossRefGoogle ScholarPubMed
Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S.CrossRefGoogle ScholarPubMed
Hallberg, L & Hulthen, L (2000) Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr 71, 11471160.CrossRefGoogle ScholarPubMed
Harrell, F (2001) Regression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
Carpenter, CE & Mahoney, AW (1992) Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr 31, 333367.CrossRefGoogle ScholarPubMed
Papanikolaou, G & Pantopoulos, K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202, 199211.CrossRefGoogle ScholarPubMed
Thompson, HJ, Kennedy, K, Witt, M et al. (1991) Effect of dietary iron deficiency or excess on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis 12, 111114.CrossRefGoogle ScholarPubMed
Singh, M, Lu, J, Briggs, SP et al. (1994) Effect of excess dietary iron on the promotion stage of 1-methyl-1-nitrosourea-induced mammary carcinogenesis: pathogenetic characteristics and distribution of iron. Carcinogenesis 15, 15671570.CrossRefGoogle Scholar
Tappel, A (2007) Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses 68, 562564.CrossRefGoogle ScholarPubMed
Kumar, S & Bandyopadhyay, U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157, 175188.CrossRefGoogle ScholarPubMed
IJssennagger, N, Rijnierse, A, de Wit, N et al. (2012) Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut 61, 10411049.CrossRefGoogle ScholarPubMed
Cross, AJ, Pollock, JR & Bingham, SA (2003) Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res 63, 23582360.Google ScholarPubMed
Zhang, S, Hunter, DJ, Forman, MR et al. (1999) Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 91, 547556.CrossRefGoogle Scholar
Kapinova, A, Kubatka, P, Golubnitschaja, O et al. (2018) Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 23, 36.CrossRefGoogle ScholarPubMed
He, J, Shen, X, Fang, A et al. (2016) Association between predominantly plant-based diets and iron status in Chinese adults: a cross-sectional analysis. Br J Nutr 116, 16211632.CrossRefGoogle ScholarPubMed
Ulbrich, EJ, Lebrecht, A, Schneider, I et al. (2003) Serum parameters of iron metabolism in patients with breast cancer. Anticancer Res 23, 51075109.Google ScholarPubMed
Gamage, SMK, Dissabandara, L, Lam, AK et al. (2018) The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit Rev Oncol Hematol 126, 121128.CrossRefGoogle ScholarPubMed
Daniel, CR, Cross, AJ, Graubard, BI et al. (2011) Prospective investigation of poultry and fish intake in relation to cancer risk. Cancer Prev Res 4, 19031911.CrossRefGoogle ScholarPubMed
Kim, AE, Lundgreen, A, Wolff, RK et al. (2016) Red meat, poultry, and fish intake and breast cancer risk among Hispanic and Non-Hispanic white women: the Breast Cancer Health Disparities Study. Cancer Causes Control 27, 527543.CrossRefGoogle ScholarPubMed
De Carli, E, Dias, GC, Morimoto, JM et al. (2018) Dietary iron bioavailability: agreement between estimation methods and association with serum ferritin concentrations in women of childbearing age. Nutrients 10, 650.CrossRefGoogle ScholarPubMed
Waldmann, A, Koschizke, JW, Leitzmann, C et al. (2004) Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann Nutr Metab 48, 103108.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Iron intake with the risk of breast cancer among Chinese women: a case–control study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Iron intake with the risk of breast cancer among Chinese women: a case–control study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Iron intake with the risk of breast cancer among Chinese women: a case–control study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *