Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-cssqh Total loading time: 0.23 Render date: 2021-06-16T03:13:20.013Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Diet and risk of gastro-oesophageal reflux disease in the Melbourne Collaborative Cohort Study

Published online by Cambridge University Press:  21 January 2021

Sabrina E Wang
Affiliation:
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
Allison M Hodge
Affiliation:
Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
S Ghazaleh Dashti
Affiliation:
Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
Suzanne C Dixon-Suen
Affiliation:
Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
Hazel Mitchell
Affiliation:
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, Australia
Robert JS Thomas
Affiliation:
Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
Elizabeth M Williamson
Affiliation:
Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK Health Data Research UK, London, UK
Enes Makalic
Affiliation:
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
Alex Boussioutas
Affiliation:
Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
Andrew M Haydon
Affiliation:
Department of Medical Oncology, Alfred Hospital, Melbourne, VIC, Australia
Graham G Giles
Affiliation:
Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
Roger L Milne
Affiliation:
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
Bradley J Kendall
Affiliation:
Department of Medicine, The University of Queensland, Brisbane, QLD, Australia Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
Dallas R English
Affiliation:
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
Corresponding

Abstract

Objective:

To examine associations between diet and risk of developing gastro-oesophageal reflux disease (GERD).

Design:

Prospective cohort with a median follow-up of 15·8 years. Baseline diet was measured using a FFQ. GERD was defined as self-reported current or history of daily heartburn or acid regurgitation beginning at least 2 years after baseline. Sex-specific logistic regressions were performed to estimate OR for GERD associated with diet quality scores and intakes of nutrients, food groups and individual foods and beverages. The effect of substituting saturated fat for monounsaturated or polyunsaturated fat on GERD risk was examined.

Setting:

Melbourne, Australia.

Participants:

A cohort of 20 926 participants (62 % women) aged 40–59 years at recruitment between 1990 and 1994.

Results:

For men, total fat intake was associated with increased risk of GERD (OR 1·05 per 5 g/d; 95 % CI 1·01, 1·09; P = 0·016), whereas total carbohydrate (OR 0·89 per 30 g/d; 95 % CI 0·82, 0·98; P = 0·010) and starch intakes (OR 0·84 per 30 g/d; 95 % CI 0·75, 0·94; P = 0·005) were associated with reduced risk. Nutrients were not associated with risk for women. For both sexes, substituting saturated fat for polyunsaturated or monounsaturated fat did not change risk. For both sexes, fish, chicken, cruciferous vegetables and carbonated beverages were associated with increased risk, whereas total fruit and citrus were associated with reduced risk. No association was observed with diet quality scores.

Conclusions:

Diet is a possible risk factor for GERD, but food considered as triggers of GERD symptoms might not necessarily contribute to disease development. Potential differential associations for men and women warrant further investigation.

Type
Research paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below.

References

Vakil, N, van Zanten, SV, Kahrilas, P et al. (2006) The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 101, 19001920.CrossRefGoogle ScholarPubMed
Vakil, N (2010) Disease definition, clinical manifestations, epidemiology and natural history of GERD. Best Pract Res Clin Gastroenterol 24, 759764.CrossRefGoogle ScholarPubMed
Revicki, DA, Wood, M, Maton, PN et al. (1998) The impact of gastroesophageal reflux disease on health-related quality of life 1. Am J Med 104, 252258.CrossRefGoogle Scholar
Ronkainen, J, Aro, P, Storskrubb, T et al. (2006) Gastro-oesophageal reflux symptoms and health-related quality of life in the adult general population – the Kalixanda study. Aliment Pharmacol Ther 23, 17251733.CrossRefGoogle ScholarPubMed
Coleman, HG, Xie, SH & Lagergren, J (2018) The epidemiology of esophageal adenocarcinoma. Gastroenterology 154, 390405.CrossRefGoogle ScholarPubMed
Eusebi, LH, Ratnakumaran, R, Yuan, Y et al. (2017) Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut 67, 430440.CrossRefGoogle ScholarPubMed
Department of Health (2019) Pharmaceautical Benefits Scheme Information Management Section PBS Expenditure and Prescriptions [Internet]. Canberra: Department of Health; available at http://www.pbs.gov.au/info/statistics/expenditure-prescriptions/pbs-expenditure-and-prescriptions (accessed December 2019).Google Scholar
Shaheen, NJ, Hansen, RA, Morgan, DR et al. (2006) The burden of gastrointestinal and liver diseases, 2006. Am J Gastroenterol 101, 21282138.CrossRefGoogle ScholarPubMed
Napier, KJ, Scheerer, M & Misra, S (2014) Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 6, 112120.CrossRefGoogle ScholarPubMed
Schneider, JL & Corley, DA (2017) The troublesome epidemiology of Barrett’s esophagus and esophageal adenocarcinoma. Gastrointest Endosc Clin N Am 27, 353364.CrossRefGoogle ScholarPubMed
Zheng, Z, Nordenstedt, H, Pedersen, NL et al. (2007) Lifestyle factors and risk for symptomatic gastroesophageal reflux in monozygotic twins. Gastroenterology 132, 8795.CrossRefGoogle ScholarPubMed
Milne, RL, Fletcher, AS, MacInnis, RJ et al. (2017) Cohort Profile: the Melbourne Collaborative Cohort Study (Health 2020). Int J Epidemiol 46, 17571757i.CrossRefGoogle Scholar
Australian Bureau of Statistics (2018) Technical Paper: Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), 2016. ABS Cat. No. 2033.0.55.001. Canberra: ABS.Google Scholar
Hunt, R, Armstrong, D, Katelaris, P et al. (2017) World gastroenterology organisation global guidelines: GERD global perspective on gastroesophageal reflux disease. J Clin Gastroenterol 51, 467478.CrossRefGoogle ScholarPubMed
Trichopoulou, A, Costacou, T, Bamia, C et al. (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348, 25992608.CrossRefGoogle Scholar
Hodge, AM, English, D, Itsiopoulos, C et al. (2011) Does a Mediterranean diet reduce the mortality risk associated with diabetes: evidence from the Melbourne Collaborative Cohort Study. Nutr Metabol Cardiovasc Dis 21, 733739.CrossRefGoogle ScholarPubMed
Chiuve, SE, Fung, TT, Rimm, EB et al. (2012) Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 142, 10091018.CrossRefGoogle ScholarPubMed
Rothman, KJ, Greenland, S & Lash, TL (2008) Modern Epidemiology, 3rd ed. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Seaman, SR & White, IR (2013) Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res 22, 278295.CrossRefGoogle ScholarPubMed
Tibshirani, R (2011) Regression shrinkage and selection via the lasso: a retrospective. J Roy Stat Soc Ser B (Stat Method) 73, 273282.CrossRefGoogle Scholar
R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
StataCorp (2015) Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.Google Scholar
Willett, W (2013) Nutritional Epidemiology. New York: Oxford University Press.Google Scholar
El-Serag, HB, Satia, JA & Rabeneck, L (2005) Dietary intake and the risk of gastro-oesophageal reflux disease: a cross sectional study in volunteers. Gut 54, 1117.CrossRefGoogle ScholarPubMed
Shapiro, M, Green, C, Bautista, JM et al. (2007) Assessment of dietary nutrients that influence perception of intra-oesophageal acid reflux events in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 25, 93101.CrossRefGoogle ScholarPubMed
Nilsson, M, Johnsen, R, Ye, W et al. (2003) Obesity and estrogen as risk factors for gastroesophageal reflux symptoms. JAMA 290, 6672.CrossRefGoogle ScholarPubMed
Nilsson, M, Lundegårdh, G, Carling, L et al. (2002) Body mass and reflux oesophagitis: an oestrogen-dependent association? Scand J Gastroenterol 37, 626630.CrossRefGoogle ScholarPubMed
Pace, F & Porro, GB (2006) Clinical spectrum, natural history and epidemiology of GERD. In Gastroesophageal Reflux Disease: Principles of Disease, Diagnosis, and Treatment, pp. 111 [Granderath, FA, Kamolz, T and Pointner, R, editors]. Wien; New York: Springer.Google Scholar
Crowell, MD, Zayat, EN, Lacy, BE et al. (2001) The effects of an inhaled β2-adrenergic agonist on lower esophageal function. Chest 120, 11841189.CrossRefGoogle Scholar
de Bortoli, N, Tolone, S, Frazzoni, M et al. (2018) Gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome: common overlapping gastrointestinal disorders. Ann Gastroenterol 31, 639648.Google ScholarPubMed
Feinle-Bisset, C & Azpiroz, F (2013) Dietary and lifestyle factors in functional dyspepsia. Nature Rev Gastroenterol Hepatol 10, 150.CrossRefGoogle ScholarPubMed
Filipović, BF, Randjelovic, T, Kovacevic, N et al. (2011) Laboratory parameters and nutritional status in patients with functional dyspepsia. Eur J Intern Med 22, 300304.CrossRefGoogle ScholarPubMed
Carvalho, RVB, Lorena, SLS, de Souza Almeida, JR et al. (2009) Food intolerance, diet composition, and eating patterns in functional dyspepsia patients. Digest Dis Sci 55, 60.CrossRefGoogle ScholarPubMed
Arias, Á, González-Cervera, J, Tenias, JM et al. (2014) Efficacy of dietary interventions for inducing histologic remission in patients with eosinophilic esophagitis: a systematic review and meta-analysis. Gastroenterology 146, 16391648.CrossRefGoogle ScholarPubMed
Muir, JG, Rose, R, Rosella, O et al. (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57, 554565.CrossRefGoogle Scholar
Mikami, DJ & Murayama, KM (2015) Physiology and pathogenesis of gastroesophageal reflux disease. Surg Clin North Am 95, 515525.CrossRefGoogle ScholarPubMed
Fisher, RS, Roberts, GS, Grabowski, CJ et al. (1978) Inhibition of lower esophageal sphincter circular muscle by female sex hormones. Am J Physiol Endocrinol Metabol 234, E243.CrossRefGoogle ScholarPubMed
Van Thiel, DH, Gavaler, JS & Stremple, J (1976) Lower esophageal sphincter pressure in women using sequential oral contraceptives. Gastroenterology 71, 232235.CrossRefGoogle ScholarPubMed
Hutson, WR, Roehrkasse, RL & Wald, A (1989) Influence of gender and menopause on gastric emptying and motility. Gastroenterology 96, 1117.CrossRefGoogle ScholarPubMed
Nebel, OT & Castell, DO (1973) Inhibition of the lower oesophageal sphincter by fat—a mechanism for fatty food intolerance. Gut 14, 270274.CrossRefGoogle ScholarPubMed
Penagini, R, Mangano, M & Bianchi, P (1998) Effect of increasing the fat content but not the energy load of a meal on gastro-oesophageal reflux and lower oesophageal sphincter motor function. Gut 42, 330333.CrossRefGoogle Scholar
Pehl, C, Waizenhoefer, A, Wendl, B et al. (1999) Effect of low and high fat meals on lower esophageal sphincter motility and gastroesophageal reflux in healthy subjects. Am J Gastroenterol 94, 1192.CrossRefGoogle ScholarPubMed
Sethi, S & Richter, JE (2017) Diet and gastroesophageal reflux disease: role in pathogenesis and management. Curr Opin Gastroenterol 33, 107111.CrossRefGoogle ScholarPubMed
Feldman, M & Barnett, C (1995) Relationships between the acidity and osmolality of popular beverages and reported postprandial heartburn. Gastroenterology 108, 125131.CrossRefGoogle ScholarPubMed
Price, SF, Smithson, KW & Castell, DO (1978) Food sensitivity in reflux esophagitis. Gastroenterology 75, 240243.CrossRefGoogle ScholarPubMed
Song, JH, Chung, SJ, Lee, JH et al. (2011) Relationship between gastroesophageal reflux symptoms and dietary factors in Korea. J Neurogastroenterol Motil 17, 5460.CrossRefGoogle ScholarPubMed
Fass, R, Quan, SF, O’Connor, GT et al. (2005) Predictors of heartburn during sleep in a large prospective cohort study. Chest 127, 16581666.CrossRefGoogle Scholar
Hamoui, N, Lord, RV, Hagen, JA et al. (2006) Response of the lower esophageal sphincter to gastric distention by carbonated beverages. J Gastrointest Surg 10, 870877.CrossRefGoogle ScholarPubMed
Mone, I, Kraja, B, Bregu, A et al. (2016) Adherence to a predominantly Mediterranean diet decreases the risk of gastroesophageal reflux disease: a cross-sectional study in a South Eastern European population. Dis Esophagus 29, 794800.CrossRefGoogle Scholar
Supplementary material: PDF

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(PDF)
PDF 903 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diet and risk of gastro-oesophageal reflux disease in the Melbourne Collaborative Cohort Study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Diet and risk of gastro-oesophageal reflux disease in the Melbourne Collaborative Cohort Study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Diet and risk of gastro-oesophageal reflux disease in the Melbourne Collaborative Cohort Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *