Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.377 Render date: 2021-09-19T03:19:17.086Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status

Published online by Cambridge University Press:  14 June 2021

Noor Rohmah Mayasari
Affiliation:
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan
Tzu-Yu Hu
Affiliation:
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan
Jane C-J Chao
Affiliation:
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan
Chyi-Huey Bai
Affiliation:
School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Yi Chun Chen
Affiliation:
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan
Ya Li Huang
Affiliation:
School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Chun-Chao Chang
Affiliation:
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Fan-Fen Wang
Affiliation:
Department of Internal Medicine, Yangming Branch, Taipei City Hospital, Taipei, Taiwan
Hamam Hadi
Affiliation:
Alma Ata Graduate School of Public Health, Universitas Alma Ata, Yogyakarta, Indonesia
Esti Nurwanti
Affiliation:
Department of Nutrition, Faculty of Health Sciences, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
Jung-Su Chang*
Affiliation:
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei 11031, Taiwan Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei, Taiwan
*Corresponding
* Corresponding author: Email susanchang@tmu.edu.tw

Abstract

Objective:

The coexistence of underweight (UW) and overweight (OW)/obese (OB) at the population level is known to affect iron deficiency (ID) anaemia (IDA), but how the weight status affects erythropoiesis during pregnancy is less clear at a population scale. This study investigated associations between the pre-pregnancy BMI (pBMI) and erythropoiesis-related nutritional deficiencies.

Design:

Anthropometry, blood biochemistry and 24-h dietary recall data were collected during prenatal care visits. The weight status was defined based on the pBMI. Mild nutrition deficiency-related erythropoiesis was defined if individuals had an ID, folate depletion or a vitamin B12 deficiency.

Setting:

The Nationwide Nutrition and Health Survey in Taiwan (Pregnant NAHSIT 2017–2019).

Participants:

We included 1456 women aged 20 to 45 years with singleton pregnancies.

Results:

Among these pregnant women, 9·6 % were UW, and 29·2 % were either OW (15·8 %) or OB (13·4 %). A U-shaped association between the pBMI and IDA was observed, with decreased odds (OR; 95 % CI) for OW subjects (0·6; 95 % CI (0·4, 0·9)) but increased odds for UW (1·2; 95 % CI (0·8, 2·0)) and OB subjects (1·2; 95 % CI (0·8, 1·8)). The pBMI was positively correlated with the prevalence of a mild nutritional deficiency. Compared to normal weight, OB pregnant women had 3·4-fold (3·4; 95 % CI (1·4, 8·1)) higher odds for multiple mild nutritional deficiencies, while UW individuals had lowest odds (0·3; 95 % CI (0·1, 1·2)). A dietary analysis showed negative relationships of pBMI with energy, carbohydrates, protein, Fe and folate intakes, but positive relationship with fat intakes.

Conclusion:

The pre-pregnancy weight status can possibly serve as a good nutritional screening tool for preventing IDA during pregnancy.

Type
Research paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Noor R Mayasari and Tzu-Yu Hu are contributed equally to this work.

References

NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 13771396.CrossRefGoogle Scholar
Nurwanti, E, Uddin, M, Chang, JS et al. (2018) Roles of sedentary behaviors and unhealthy foods in increasing the obesity risk in adult men and women: a cross-sectional national study. Nutrients 10, 704.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (2015) The Global Prevalence of Anaemia in 2011. Geneva: WHO Document Production Services.Google Scholar
World Health Organization (WHO) (2017) Nutritional anaemias: tools for effective prevention and control. https://www.who.int/nutrition/publications/micronutrients/anaemias-tools-prevention-control/en/ (accessed December 2018).Google Scholar
Fisher, AL & Nemeth, E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106, 1567S1574S.CrossRefGoogle ScholarPubMed
Garcia-Valdes, L, Campoy, C, Hayes, H et al. (2015) The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int J Obes 39, 571578.CrossRefGoogle ScholarPubMed
Flores-Quijano, ME, Montalvo-Velarde, I, Vital-Reyes, VS et al. (2016) Longitudinal analysis of the interaction between obesity and pregnancy on iron homeostasis: role of hepcidin. Arch Med Res 47, 550556.CrossRefGoogle ScholarPubMed
Jones, AD, Zhao, G, Jiang, YP et al. (2016) Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur J Clin Nutr 70, 918924.CrossRefGoogle ScholarPubMed
Flores-Quijano, ME, Vega-Sánchez, R, Tolentino-Dolores, MC et al. (2019) Obesity is associated with changes in iron nutrition status and its homeostatic regulation in pregnancy. Nutrients 11, 693.CrossRefGoogle ScholarPubMed
Scholing, JM, Olthof, MR, Jonker, FA et al. (2018) Association between pre-pregnancy weight status and maternal micronutrient status in early pregnancy. Public Health Nutr 21, 20462055.CrossRefGoogle ScholarPubMed
Shin, D, Lee, KW & Song, WO (2016) Pre-pregnancy weight status is associated with diet quality and nutritional biomarkers during pregnancy. Nutrients 8, 162.CrossRefGoogle ScholarPubMed
Bjørke-Monsen, AL, Ulvik, A, Nilsen, RM et al. (2016) Impact of pre-pregnancy BMI on B vitamin and inflammatory status in early pregnancy: an observational cohort study. Nutrients 8, 776.CrossRefGoogle Scholar
Sangkhae, V & Nemeth, E (2017) Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 8, 126136.CrossRefGoogle ScholarPubMed
Tan, J, Qi, YN, He, GL et al. (2018) Association between maternal weight indicators and iron deficiency anemia during pregnancy: a cohort study. Chin Med J 131, 25662574.CrossRefGoogle ScholarPubMed
Uno, K, Takemi, Y, Hayashi, F et al. (2016) Nutritional status and dietary intake among pregnant women in relation to pre-pregnancy body mass index in Japan. Nihon Koshu Eisei Zasshi 63, 738749.Google ScholarPubMed
Cao, C, Pressman, EK, Cooper, EM et al. (2016) Prepregnancy body mass index and gestational weight gain have no negative impact on maternal or neonatal iron status. Reprod Sci 23, 613622.CrossRefGoogle ScholarPubMed
Kordas, K, Fonseca Centeno, ZY, Pachón, H et al. (2013) Being overweight or obese is associated with lower prevalence of anemia among Colombian women of reproductive age. J Nutr 143, 175181.CrossRefGoogle ScholarPubMed
Qin, Y, Melse-Boonstra, A, Pan, X et al. (2013) Anemia in relation to body mass index and waist circumference among Chinese women. Nutr J 12, 10.CrossRefGoogle ScholarPubMed
Sumarmi, S, Puspitasari, N, Handajani, R et al. (2016) Underweight as a risk factor for iron depletion and iron-deficient erythropoiesis among young women in rural areas of East Java, Indonesia. Malays J Nutr 22, 219232.Google Scholar
Thankachan, P, Muthayya, S, Walczyk, T et al. (2007) An analysis of the etiology of anemia and iron deficiency in young women of low socioeconomic status in Bangalore, India. Food Nutr Bull 28, 328336.CrossRefGoogle ScholarPubMed
Noh, JW, Kwon, YD, Yang, Y et al. (2018) Relationship between body image and weight status in East Asian countries: comparison between South Korea and Taiwan. BMC Public Health 18, 814.CrossRefGoogle ScholarPubMed
Astrup, A & Bügel, S (2019) Overfed but undernourished: recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int J Obes 43, 219232.CrossRefGoogle ScholarPubMed
Chang, JS, Chen, YC, Owaga, E et al. (2014) Interactive effects of dietary fat/carbohydrate ratio and body mass index on iron deficiency anemia among Taiwanese women. Nutrients 6, 39293941.CrossRefGoogle ScholarPubMed
Gutierrez, Y & King, JC (1993) Nutrition during teenage pregnancy. Pediatr Ann 22, 99108.CrossRefGoogle ScholarPubMed
Shin, D, Chung, H, Weatherspoon, L et al. (2014) Validity of prepregnancy weight status estimated from self-reported height and weight. Matern Child Health J 18, 16671674.CrossRefGoogle ScholarPubMed
World Health Organization (2000) The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Sydney: Health Communications Australia.Google Scholar
Yeh, CJ, Chang, HY & Pan, WH (2011) Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: from NAHSIT 1993–1996 to NAHSIT 2005–2008. Asia Pac J Clin Nutr 20, 292300.Google ScholarPubMed
Taiwan Food and Drug Administration Ministry of Health and Welfare (2012) Taiwan’s Dietary Reference Intakes, 17th ed. Taipei: Taiwan Food and Drug Administration Ministry of Health and Welfare.Google Scholar
Centers for Disease Control (CDC) (1989) CDC criteria for anemia in children and childbearing-aged women. MMWR Morb Mortal Wkly Rep 38, 400404.Google Scholar
World Health Organization (2001) Iron Deficiency Anaemia: Assessment, Prevention and Control: A Guide for Programme Managers. Geneva: World Health Organization.Google Scholar
Breymann, C (2015) Iron deficiency anemia in pregnancy. Semin Hematol 52, 339347.CrossRefGoogle ScholarPubMed
Zhao, L, Zhang, X, Shen, Y et al. (2015) Obesity and iron deficiency: a quantitative meta-analysis. Obes Rev 16, 10811093.CrossRefGoogle ScholarPubMed
Daru, J, Colman, K, Stanworth, SJ et al. (2017) Serum ferritin as an indicator of iron status: what do we need to know? Am J Clin Nutr 106, 1634S1639S.CrossRefGoogle ScholarPubMed
Chen, KJ, Pan, WH, Lin, Y-C et al. (2011) Trends in folate status in the Taiwanese population aged 19 years and older from the Nutrition and Health Survey in Taiwan 1993–1996 to 2005–2008. Asia Pac J Clin Nutr 20, 275282.Google Scholar
de Benoist, B (2008) Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 29, S238S244.CrossRefGoogle ScholarPubMed
Kim, HY (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod 38, 5254.CrossRefGoogle ScholarPubMed
Kassebaum, NJ, Jasrasaria, R, Naghavi, M et al. (2014) A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615624.CrossRefGoogle ScholarPubMed
Lee, JO, Lee, JH, Ahn, S et al. (2014) Prevalence and risk factors for iron deficiency anemia in the Korean population: results of the fifth Korea National Health and Nutrition Examination Survey. J Korean Med Sci 29, 224229.CrossRefGoogle Scholar
He, GL, Sun, X, Tan, J et al. (2018) Survey of prevalence of iron deficiency and iron deficiency anemia in pregnant women in urban areas of China. Zhonghua Fu Chan Ke Za Zhi 53, 761767.Google ScholarPubMed
Choi, OJ, Cho, YG, Kang, JH et al. (2013) Weight control attempts in underweight Korean adults: Korea national health and nutrition examination survey, 2007–2010. Korean J Fam Med 34, 393402.CrossRefGoogle ScholarPubMed
Bah, A, Pasricha, SR, Jallow, MW et al. (2017) Serum hepcidin concentrations decline during pregnancy and may identify iron deficiency: analysis of a longitudinal pregnancy cohort in the Gambia. J Nutr 147, 11311137.CrossRefGoogle ScholarPubMed
Teng, IC, Tseng, SH, Aulia, B et al. (2020) Can diet-induced weight loss improve iron homoeostasis in patients with obesity: a systematic review and meta-analysis. Obes Rev 21, 116.CrossRefGoogle ScholarPubMed
Persson, V, Winkvist, A, Ninuk, T et al. (2001) Variability in nutrient intakes among pregnant women in Indonesia: implications for the design of epidemiological studies using the 24-h recall method. J Nutr 131, 325330.CrossRefGoogle ScholarPubMed
Moran, L, McNaughton, S, Sui, Z et al. (2018) The characterisation of overweight and obese women who are under reporting energy intake during pregnancy. BMC Pregnancy Childbirth 18, 110.CrossRefGoogle ScholarPubMed
Supplementary material: File

Mayasari et al. supplementary material

Mayasari et al. supplementary material

Download Mayasari et al. supplementary material(File)
File 123 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *