Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T01:51:53.011Z Has data issue: false hasContentIssue false

Noradrenaline uptake inhibition increases melatonin secretion, a measure of noradrenergic neurotransmission, in depressed patients

Published online by Cambridge University Press:  09 July 2009

E. Palazidou*
Affiliation:
Department of Psychiatry, Institute of Psychiatry; and Poisons Unit, New Cross Hospital, London
A. Papadopoulos
Affiliation:
Department of Psychiatry, Institute of Psychiatry; and Poisons Unit, New Cross Hospital, London
H. Ratcliff
Affiliation:
Department of Psychiatry, Institute of Psychiatry; and Poisons Unit, New Cross Hospital, London
S. Dawling
Affiliation:
Department of Psychiatry, Institute of Psychiatry; and Poisons Unit, New Cross Hospital, London
S. A. Checkley
Affiliation:
Department of Psychiatry, Institute of Psychiatry; and Poisons Unit, New Cross Hospital, London
*
1Address for correspondence: Dr E. Palazidou, Department of Psychiatry, Institute of Psychiatry, De Crespigny Park, London SE5 8AF.

Synopsis

Eight patients with endogenous depression who had received no antidepressant treatment for the previous year were treated with the noradrenaline (NA) uptake inhibitor, desipramine (DMI). Pre-treatment plasma melatonin concentrations were normal. After one day of DMI treatment plasma melatonin concentrations were increased but the response was impaired compared to normal subjects. The acute effect of DMI on plasma melatonin persisted after six weeks of treatment. These findings question the hypothesis that beta adrenoceptors are supersensitive in depression and that antidepressant drugs act by down-regulating these receptors.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsterdam, J. D., Brunswick, D. J., Potter, L., Winokur, A. & Rickels, K. (1985). Desipramine and 2-hydroxydesipramine plasma levels in endogenous depressed patients. Archives of General Psychiatry 42, 361364.CrossRefGoogle ScholarPubMed
Arato, M., Laszlo, I., Pelletier, J., Grof, E., Grof, P. & Brown, G. M. (1984). Reproducibility of the overnight melatonin secretion pattern in healthy men. Journal of Steroid Biochemistry 20, 1480A.CrossRefGoogle Scholar
Bannerjee, S. P., Kung, L. S., Riggi, S. J. & Chung, S. K. (1979). Development of beta-adrenergic receptor sensitivity by antidepressants. Nature 268, 455456.CrossRefGoogle Scholar
Beck-Friis, J., von Rosen, D., Kjellman, B. F., Ljunggren, J.-C. & Wetterberg, L. (1984). Melatonin in relation to body measures, sex, age, season and the use of drugs in patients with major affective disorders and healthy subjects. Psychoneuroendocrinology 9, 261277.CrossRefGoogle ScholarPubMed
Bergstrom, D. A. & Kellar, K. J. (1979). Adrenergic and serotonergic receptor binding in rat brain after chronic desmethylimipramine treatment. Journal of Pharmacology and Experimental Therapeutics 209, 256261.Google ScholarPubMed
Blackshear, M. A., Martin, L. L. & Sanders-Bush, E. (1986). Adaptive changes in the 5-HT2 binding site after chronic administration of agonists and antagonists. Neuropharmacology 25, 12671271.CrossRefGoogle ScholarPubMed
Brown, R. P., Caroff, S., Koscis, J. H., Amsterdam, J., Winokur, A., Stokes, P. & Frazer, A. (1985). Nocturnal serum melatonin in major depressive disorder before and after desmethylimipramine treatment. Psychopharmacology Bulletin 21, 579581.Google ScholarPubMed
Brunswick, D. J., Amsterdam, J. D., Potter, L., Caroff, S. & Rickels, K. (1983). Relationship between tricyclic antidepressant plasma levels and clinical response in patients treated with desipramine or doxepin. Acta Psychiatrica Scandinavica 67, 371377.CrossRefGoogle ScholarPubMed
Carney, M. W. P., Roth, M. & Garside, R. F. (1965). The diagnosis of depressive syndromes and the prediction of ECT response. British Journal of Psychiatry 111, 659674.CrossRefGoogle Scholar
Checkley, S. A., Thompson, C., Burton, S., Franey, C. & Arendt, J. (1985). Clinical studies of the effect of (+) and (−)oxaprotiline upon noradrenaline uptake. Psychopharmacology 87, 116118.CrossRefGoogle ScholarPubMed
Clements-Jewery, S. (1978). The development of cortical beta-adrenoceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserin. Neuropharmacology 17, 779781.CrossRefGoogle Scholar
Cohen, R. M., Campbell, I. C., Dauphin, M., Tallman, J. F. & Murphy, D. (1982). Changes in alpha and beta receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepressants. Neuropharmacology 21, 293298.CrossRefGoogle ScholarPubMed
Cowen, P. J., Green, A. R., Grahame-Smith, D. G. & Braddock, L. E. (1985). Plasma melatonin during desmethylimipramine treatment: evidence for changes in noradrenergic transmission. British Journal of Clinical Pharmacology 19, 799805.CrossRefGoogle ScholarPubMed
Crews, F. T. & Smith, C. B. (1978). Presynaptic alpha-receptor sensitivity after long-term antidepressant treatment. Science 202, 322324.CrossRefGoogle ScholarPubMed
Demisch, K., Demisch, L., Bochnik, H. J., Nickelsen, T., Althoff, P. H., Schoffling, K. & Rieth, R. (1986). Melatonin and cortisol increase after fluvoxamine. British Journal of Clinical Pharmacology 22, 620622.CrossRefGoogle ScholarPubMed
Den Boer, J. A. (1988). Serotonergic mechanisms in anxiety disorders. An inquiry into serotonin function in panic disorder. Ph.D. thesis, University of Utrecht, The Netherlands.Google Scholar
Franey, C., Aldhous, M., Burton, S., Checkley, S. A. & Arendt, J. (1986). Acute treatment with desipramine stimulates melatonin and 6-sulphatoxymelatonin production in man. British Journal of Pharmacology 22, 7379.Google Scholar
Fraser, S., Cowen, P., Franklin, M., Franey, C. & Arendt, J. (1983). Direct radioimmunoassay for melatonin in plasma. Clinical Chemistry 29, 396397.CrossRefGoogle ScholarPubMed
Gandolfi, O., Barbaccia, M. L., Cuang, D. M. & Costa, E. (1983). Daily bupropion injections for three weeks attenuate the NE stimulation of adenylate cyclase and the number of beta-adrenergic recognition sites in rat frontal cortex. Neuropharmacology 22, 927929.CrossRefGoogle Scholar
Golden, R. N., Markey, S. P., Risby, E. D., Rudorfer, M. V., Cowdry, R. W. & Potter, W. Z. (1988). Antidepressants reduce whole-body norepinephrine turnover while enhancing 6-hydroxymelatonin output. Archives of General Psychiatry 45, 150154.CrossRefGoogle ScholarPubMed
Halbreich, U., Weinberg, U., Stewart, J., Klein, D. F., Weitzman, E. D. & Quitkin, F. M. (1981). An inverse correlation between serum levels of desmethylimipramine and melatonin-like immunoreactivity in DMI-responsive depressives. Psychiatric Research 4, 109113.CrossRefGoogle ScholarPubMed
Hall, H. & Ogren, S.-O. (1981). Effects of antidepressant drugs on different receptors in the brain. European Journal of Pharmacology 70, 393407.CrossRefGoogle ScholarPubMed
Heikkila, R. E., Goldfinger, S. S. & Orlansky, H. (1976). The effects of various phenothiazines and tricyclic antidepressants on the accumulation and release of [3H]norephinephrine and [3H]5-hydroxytryptamine in slices of rat occipital cortex. Research Communications in Chemical Pathology and Pharmacology 13, 237250.Google Scholar
Iversen, L. L. (1965). Inhibition of noradrenaline uptake by drugs. Journal of Pharmacy and Pharmacology 17, 62.CrossRefGoogle ScholarPubMed
Jane, I., McKinnon, A. & Flanagan, R. J. (1985). High-performance liquid chromatography of basic drugs on silica columns using non-aqueous ionic elements. II. Application of UV, fluorescence and electrochemical oxidation detection. Journal of Chromatography 323, 191225.CrossRefGoogle Scholar
Klein, D. C. (1985). Photoneural regulation of the mammalian pineal gland. In Photoperiodism, Melatonin and the Pineal (Ciba Foundation Symposium 117), pp. 3856. Pitman: London.Google Scholar
Klein, D. C. & Weller, J. (1973). Adrenergic adenosine 3′5′-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity to synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland. Journal of Pharmacology and Experimental Therapeutics 186, 516527.Google ScholarPubMed
McIntyre, I. M., Burrows, G. D. & Norman, T. R., (1988). Suppression of plasma melatonin by a single dose of the benzodiazepine alprazolam in humans. Biological Psychiatry 24, 105108.CrossRefGoogle ScholarPubMed
Maj, J., Papp, M., Skuza, G., Bigajska, K. & Zazula, M. (1989). The influence of repeated treatment with imipramine, (+)- and (−)-oxaprotiline on behavioural effects of dopamine D-l and D-2 agonists. Journal of Neurological Transmission 76, 2938.CrossRefGoogle Scholar
Menkes, D. B., Aghajanian, G. K. & Gallager, D. W. (1983). Chronic antidepressant treatment enhances agonist affinity of brain alpha-1-adrenoceptors. European Journal of Pharmacology 87, 3541.CrossRefGoogle ScholarPubMed
Mogilnicka, E., Arbilla, S., Depoortere, H. & Langer, Z. (1980). Rapid-eye-movement sleep deprivation decreases the density of 3H-dihydroalprenolol and 3H-imipramine binding sites in the rat cerebral cortex. European Journal of Pharmacology 65, 289292.CrossRefGoogle ScholarPubMed
Mogilnicka, F., Zazula, M. & Wedzony, K. (1987). Functional supersensitivity to the alpha-1-adrenoceptor agonist after repeated treatment with antidepressant drugs is not conditioned by beta-down-regulation. Neuropharmacology 26, 14571461.CrossRefGoogle Scholar
Murphy, D. L., Charanjit, S., Garrick, A. & Garrick, N. A. (1986). How antidepressants work: cautionary conclusions based on clinical and laboratory studies of the long-term consequences of antidepressant drug treatment. In Antidepressants and Receptor Function (Ciba Foundation Symposium 123), pp. 106125. Wiley: Chichester.Google Scholar
Oswald, I., Brzezinova, V. & Dunleavy, D. L. F. (1972). On the slowness of action of tricyclic antidepressant drugs. British Journal of Psychiatry 120, 673677.CrossRefGoogle ScholarPubMed
Palazidou, E., Beer, M., Checkley, S. & Stahl, S. (1988). Pharmacologic exploitation of neurotransmitter receptors for the design of novel antidepressant drugs. Drug Design and Delivery 2, 247256.Google ScholarPubMed
Palazidou, E., Franey, C., Arendt, J., Stahl, S. & Checkley, S. A. (1989). Evidence for the functional role of alpha-1 adrenoceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology 14, 131135.CrossRefGoogle ScholarPubMed
Palazidou, E., Skene, S., Arendt, J., Everitt, B. & Checkley, S. (1992). The acute and chronic effects of (+)- and (−)-oxaprotiline upon melatonin secretion in normal subjects. Psychological Medicine 22, 6167.CrossRefGoogle ScholarPubMed
Perumal, A. S., Smith, T. M., Suckow, R. F. & Cooper, T. B. (1986). Down-regulation of beta-receptors by bupropion and its major metabolite in mouse brain. Neuropharmacology 25, 13231326.CrossRefGoogle ScholarPubMed
Peroutka, S. J. & Snyder, S. H. (1980). Regulation of serotonin-2 receptors labelled with [3H]spiroperidol by chronic treatment with the antidepressant amitriptyline. Journal of Pharmacology and Experimental Therapeutics 215, 582587.Google ScholarPubMed
Pilc, A. & Vetulani, J. (1982). Depression by chronic electroconvulsive treatment of clonidine hypothermia and [3H]clonidine binding to rat cortical membranes. European Journal of Pharmacology 80, 109113.CrossRefGoogle ScholarPubMed
Plaznik, A., Danysz, W. & Kostowski, W. (1984). Behavioural evidence for alpha-1-adrenoceptor up- and alpha-2-adrenoceptor down-regulation in the rat hippocampus after chronic desipramine treatment. European Journal of Pharmacology 101, 305306.CrossRefGoogle ScholarPubMed
Richelson, E. (1984). The newer antidepressants: structures, pharmacokinetics, pharmacodynamics and proposed mechanisms of action. Psychopharmcological Bulletin 20, 5869.Google ScholarPubMed
Sack, R. L. & Lewy, A. J. (1985). Desmethylimipramine treatment increases melatonin production in humans. Biological Psychiatry 21, 406409.CrossRefGoogle Scholar
Smith, C. B., Garcia-Sevilla, J. A. & Hollingsworth, P. (1981). Alpha-2 adrenoceptors in rat brain are drecreased after long-term tricyclic antidepressant drug treatment. Brain Research 210, 413418.CrossRefGoogle Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria: rationale and reliability. Archives of General Psychiatry 35, 773782.CrossRefGoogle ScholarPubMed
Sulser, F., Vetulani, J. & Mobley, P. I. (1978). Mode of action of antidepressant drugs. Biochemical Pharmacology 27, 257261.CrossRefGoogle ScholarPubMed
Thompson, C., Mezey, J., Corn, T. H., Franey, C., Arendt, J. & Checkley, S. A. (1985). The effect of desipramine upon melatonin and cortisol secretion in depressed patients and normal subjects. British Journal of Psychiatry 147, 389393.CrossRefGoogle ScholarPubMed
Thompson, C., Franey, C., Arendt, J. & Checkley, S. A. (1988). A comparison of melatonin secretion in depressed patients and normal subjects. British Journal of Psychiatry 152, 260265.CrossRefGoogle ScholarPubMed
Vetulani, J., Stawarz, R. J., Dingell, J. V. & Sulser, F. (1976). A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic c-AMP generating system in the rat limbic forebrain. Naunyn-Schmiederberg's Archives of Pharmacology 293, 109114.CrossRefGoogle Scholar
Weinberg, U., D'Eletto, R. D., Weitzman, E. D., Erlich, S. & Hollander, C. S. (1979). Circulating melatonin in man: episodic secretion throughout the light-dark cycle. Journal of Clinical Endocrinology and Metabolism 48, 114118.CrossRefGoogle ScholarPubMed
Wetterberg, L. (1983). The relationship between the pineal gland and the pituitary-adrenal axis in health, endocrine and psychiatric conditions. Psychoneuroendocrinology 8, 7580.CrossRefGoogle ScholarPubMed
Wirz-Justice, A. & Arendt, J. (1980). Plasma melatonin and antidepressant drugs. Lancet ii, 425.CrossRefGoogle Scholar