Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T05:31:36.312Z Has data issue: false hasContentIssue false

Increased fronto-striatal reward prediction errors moderate decision making in obsessive–compulsive disorder

Published online by Cambridge University Press:  09 January 2017

T. U. Hauser*
Affiliation:
Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
R. Iannaccone
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland
R. J. Dolan
Affiliation:
Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
J. Ball
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland
J. Hättenschwiler
Affiliation:
Anxiety Disorders and Depression Treatment Center Zurich (ADTCZ), Zurich, Switzerland
R. Drechsler
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland
M. Rufer
Affiliation:
Department of Psychiatry and Psychotherapy, University Hospital Zurich, University of Zurich, Zurich, Switzerland
D. Brandeis
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
S. Walitza
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
S. Brem
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
*
*Address for correspondence: T. U. Hauser, Ph.D., Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK. (Email: t.hauser@ucl.ac.uk)

Abstract

Background

Obsessive–compulsive disorder (OCD) has been linked to functional abnormalities in fronto-striatal networks as well as impairments in decision making and learning. Little is known about the neurocognitive mechanisms causing these decision-making and learning deficits in OCD, and how they relate to dysfunction in fronto-striatal networks.

Method

We investigated neural mechanisms of decision making in OCD patients, including early and late onset of disorder, in terms of reward prediction errors (RPEs) using functional magnetic resonance imaging. RPEs index a mismatch between expected and received outcomes, encoded by the dopaminergic system, and are known to drive learning and decision making in humans and animals. We used reinforcement learning models and RPE signals to infer the learning mechanisms and to compare behavioural parameters and neural RPE responses of the OCD patients with those of healthy matched controls.

Results

Patients with OCD showed significantly increased RPE responses in the anterior cingulate cortex (ACC) and the putamen compared with controls. OCD patients also had a significantly lower perseveration parameter than controls.

Conclusions

Enhanced RPE signals in the ACC and putamen extend previous findings of fronto-striatal deficits in OCD. These abnormally strong RPEs suggest a hyper-responsive learning network in patients with OCD, which might explain their indecisiveness and intolerance of uncertainty.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

† Shared authorship.

References

Alexander, GE, DeLong, MR, Strick, PL (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience 9, 357381.Google Scholar
Alexander, WH, Brown, JW (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience 14, 13381344.CrossRefGoogle ScholarPubMed
Aouizerate, B, Guehl, D, Cuny, E, Rougier, A, Bioulac, B, Tignol, J, Burbaud, P (2004). Pathophysiology of obsessive–compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Progress in Neurobiology 72, 195221.Google Scholar
Becker, MPI, Nitsch, AM, Schlösser, R, Koch, K, Schachtzabel, C, Wagner, G, Miltner, WHR, Straube, T (2014). Altered emotional and BOLD responses to negative, positive and ambiguous performance feedback in OCD. Social Cognitive and Affective Neuroscience 9, 11271133.Google Scholar
Boedhoe, PSW, Schmaal, L, Abe, Y, Ameis, SH, Arnold, PD, Batistuzzo, MC, Benedetti, F, Beucke, JC, Bollettini, I, Bose, A, Brem, S, Calvo, A, Cheng, Y, Cho, KIK, Dallaspezia, S, Denys, D, Fitzgerald, KD, Fouche, J-P, Giménez, M, Gruner, P, Hanna, GL, Hibar, DP, Hoexter, MQ, Hu, H, Huyser, C, Ikari, K, Jahanshad, N, Kathmann, N, Kaufmann, C, Koch, K, Kwon, JS, Lazaro, L, Liu, Y, Lochner, C, Marsh, R, Martínez-Zalacaín, I, Mataix-Cols, D, Menchón, JM, Minuzzi, L, Nakamae, T, Nakao, T, Narayanaswamy, JC, Piras, F, Piras, F, Pittenger, C, Reddy, YCJ, Sato, JR, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stevens, MC, Szeszko, PR, Tolin, DF, Venkatasubramanian, G, Walitza, S, Wang, Z, van Wingen, GA, Xu, J, Xu, X, Yun, J-Y, Zhao, Q; ENIGMA OCD Working Group, Thompson, PM, Stein, DJ, van den Heuvel, OA (2016). Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. American Journal of Psychiatry. Published online 9 September 2016. doi:10.1176/appi.ajp.2016.16020201.Google Scholar
Brem, S, Grünblatt, E, Drechsler, R, Riederer, P, Walitza, S (2014). The neurobiological link between OCD and ADHD. Attention Deficit and Hyperactivity Disorders 6, 175202.CrossRefGoogle ScholarPubMed
Brem, S, Hauser, TU, Iannaccone, R, Brandeis, D, Drechsler, R, Walitza, S (2012). Neuroimaging of cognitive brain function in paediatric obsessive compulsive disorder: a review of literature and preliminary meta-analysis. Journal of Neural Transmission (Vienna, Austria: 1996) 119, 14251448.Google Scholar
Carr, AT (1974). Compulsive neurosis: a review of the literature. Psychological Bulletin 81, 311318.CrossRefGoogle ScholarPubMed
Cavanagh, JF, Frank, MJ (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences 18, 414421.CrossRefGoogle ScholarPubMed
Cavanagh, JF, Gründler, TOJ, Frank, MJ, Allen, JJB (2010). Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia 48, 20982109.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Menzies, L, Hampshire, A, Suckling, J, Fineberg, NA, del Campo, N, Aitken, M, Craig, K, Owen, AM, Bullmore, ET, Robbins, TW, Sahakian, BJ (2008). Orbitofrontal dysfunction in patients with obsessive–compulsive disorder and their unaffected relatives. Science (New York, NY) 321, 421422.Google Scholar
Chowdhury, R, Guitart-Masip, M, Lambert, C, Dayan, P, Huys, Q, Düzel, E, Dolan, RJ (2013). Dopamine restores reward prediction errors in old age. Nature Neuroscience 16, 648653.Google Scholar
Coles, ME, Frost, RO, Heimberg, RG, Rhéaume, J (2003). ‘Not just right experiences’: perfectionism, obsessive–compulsive features and general psychopathology. Behaviour Research and Therapy 41, 681700.CrossRefGoogle ScholarPubMed
Daw, ND, Gershman, SJ, Seymour, B, Dayan, P, Dolan, RJ (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 12041215.Google Scholar
Delmo, C, Weiffenbach, O, Stalder, C, Poustka, F (2001). Diagnostisches Interview Kiddie-SADS-Present and Lifetime Version (K-SADS-PL). 5. Auflage der deutschen Forschungsversion, erweitert um ICD-10-Diagnostik (5th Edition of the German Research Version with the Addition of ICD-10 Diagnosis). Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters: Frankfurt.Google Scholar
Denys, D, van der Wee, N, Janssen, J, De Geus, F, Westenberg, HGM (2004 a). Low level of dopaminergic D2 receptor binding in obsessive–compulsive disorder. Biological Psychiatry 55, 10411045.Google Scholar
Denys, D, Zohar, J, Westenberg, HGM (2004 b). The role of dopamine in obsessive–compulsive disorder: preclinical and clinical evidence. Journal of Clinical Psychiatry 65 (Suppl. 14), 1117.Google Scholar
Doya, K (2008). Modulators of decision making. Nature Neuroscience 11, 410416.CrossRefGoogle ScholarPubMed
Endrass, T, Klawohn, J, Schuster, F, Kathmann, N (2008). Overactive performance monitoring in obsessive–compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia 46, 18771887.Google Scholar
Endrass, T, Koehne, S, Riesel, A, Kathmann, N (2013). Neural correlates of feedback processing in obsessive–compulsive disorder. Journal of Abnormal Psychology 122, 387396.CrossRefGoogle ScholarPubMed
Endrass, T, Ullsperger, M (2014). Specificity of performance monitoring changes in obsessive–compulsive disorder. Neuroscience and Biobehavioral Reviews 46, 124138.Google Scholar
Falkenstein, M, Hohnsbein, J, Hoormann, J, Blanke, (1990). Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In Psychophysiological Brain Research (ed. Brunia, C, Gaillard, A and Kok, A), pp. 192195. Tilburg University Press: Tilburg, The Netherlands.Google Scholar
Fear, CF, Healy, D (1997). Probabilistic reasoning in obsessive–compulsive and delusional disorders. Psychological Medicine 27, 199208.CrossRefGoogle ScholarPubMed
Figee, M, Luigjes, J, Smolders, R, Valencia-Alfonso, CE, van Wingen, G, de Kwaasteniet, B, Mantione, M, Ooms, P, de Koning, P, Vulink, N, Levar, N, Droge, L, van den Munckhof, P, Schuurman, PR, Nederveen, A, van den Brink, W, Mazaheri, A, Vink, M, Denys, D (2013). Deep brain stimulation restores frontostriatal network activity in obsessive–compulsive disorder. Nature Neuroscience 16, 386387.Google Scholar
Fiore, VG, Rigoli, F, Stenner, M-P, Zaehle, T, Hirth, F, Heinze, H-J, Dolan, RJ (2016). Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive. Scientific Reports 6, 23327.Google Scholar
Fiore, VG, Sperati, V, Mannella, F, Mirolli, M, Gurney, K, Friston, K, Dolan, RJ, Baldassarre, G (2014). Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot. Frontiers in Psychology 5, 124.CrossRefGoogle Scholar
Frank, MJ, Santamaria, A, O'Reilly, RC, Willcutt, E (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 32, 15831599.CrossRefGoogle ScholarPubMed
Freyer, T, Klöppel, S, Tüscher, O, Kordon, A, Zurowski, B, Kuelz, A-K, Speck, O, Glauche, V, Voderholzer, U (2011). Frontostriatal activation in patients with obsessive–compulsive disorder before and after cognitive behavioral therapy. Psychological Medicine 41, 207216.CrossRefGoogle ScholarPubMed
Gehring, WJ, Himle, J, Nisenson, LG (2000). Action-monitoring dysfunction in obsessive–compulsive disorder. Psychological Science 11, 16.Google Scholar
Gillan, CM, Apergis-Schoute, AM, Morein-Zamir, S, Urcelay, GP, Sule, A, Fineberg, NA, Sahakian, BJ, Robbins, TW (2015). Functional neuroimaging of avoidance habits in obsessive–compulsive disorder. American Journal of Psychiatry 172, 284293.Google Scholar
Gillan, CM, Kosinski, M, Whelan, R, Phelps, EA, Daw, ND (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305.Google Scholar
Gillan, CM, Papmeyer, M, Morein-Zamir, S, Sahakian, BJ, Fineberg, NA, Robbins, TW, de Wit, S (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive–compulsive disorder. American Journal of Psychiatry 168, 718726.Google Scholar
Gillan, CM, Robbins, TW (2014). Goal-directed learning and obsessive–compulsive disorder. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369, 20130475.Google ScholarPubMed
Gläscher, J, Hampton, AN, O'Doherty, JP (2009). Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cerebral Cortex 19, 483495.CrossRefGoogle ScholarPubMed
Glimcher, PW (2011). Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences of the USA 108, 1564715654.Google Scholar
Goodman, WK, Price, LH, Rasmussen, SA, Mazure, C, Fleischmann, RL, Hill, CL, Heninger, GR, Charney, DS (1989). The Yale–Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Archives of General Psychiatry 46, 10061011.Google Scholar
Greenberg, BD, Rauch, SL, Haber, SN (2010). Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 35, 317336.Google Scholar
Grünblatt, E, Hauser, TU, Walitza, S (2014). Imaging genetics in obsessive–compulsive disorder: linking genetic variations to alterations in neuroimaging. Progress in Neurobiology 121, 114124.Google Scholar
Gründler, TOJ, Cavanagh, JF, Figueroa, CM, Frank, MJ, Allen, JJB (2009). Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia 47, 19781987.CrossRefGoogle ScholarPubMed
Haber, SN, Behrens, TEJ (2014). The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83, 10191039.Google Scholar
Hauser, TU, Eldar, E, Dolan, RJ (2016 a). Neural mechanisms of harm-avoidance learning: a model for obsessive–compulsive disorder? JAMA Psychiatry 73, 11961197.CrossRefGoogle Scholar
Hauser, TU, Fiore, VG, Moutoussis, M, Dolan, RJ (2016 b). Computational psychiatry of ADHD: neural gain impairments across Marrian levels of analysis. Trends in Neurosciences 39, 6373.CrossRefGoogle ScholarPubMed
Hauser, TU, Hunt, LT, Iannaccone, R, Walitza, S, Brandeis, D, Brem, S, Dolan, RJ (2015 a). Temporally dissociable contributions of human medial prefrontal subregions to reward-guided learning. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 35, 1120911220.Google Scholar
Hauser, TU, Iannaccone, R, Ball, J, Mathys, C, Brandeis, D, Walitza, S, Brem, S (2014 a). Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 71, 11651173.CrossRefGoogle ScholarPubMed
Hauser, TU, Iannaccone, R, Stämpfli, P, Drechsler, R, Brandeis, D, Walitza, S, Brem, S (2014 b). The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization. NeuroImage 84, 159168.Google Scholar
Hauser, TU, Iannaccone, R, Walitza, S, Brandeis, D, Brem, S (2015 b). Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. NeuroImage 104, 347354.CrossRefGoogle ScholarPubMed
Holroyd, CB, Coles, MGH (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review 109, 679709.CrossRefGoogle ScholarPubMed
Johannes, S, Wieringa, BM, Nager, W, Rada, D, Dengler, R, Emrich, HM, Münte, TF, Dietrich, DE (2001). Discrepant target detection and action monitoring in obsessive–compulsive disorder. Psychiatry Research 108, 101110.Google Scholar
Kasper, L, Bollmann, S, Diaconescu, AO, Hutton, C, Heinzle, J, Iglesias, S, Hauser, TU, Sebold, M, Manjaly, ZM, Pruessmann, KP, Stephan, KE (2016). The PhysIO toolbox for modeling physiological noise in fMRI data. Journal of Neuroscience Methods 276, 5672.Google Scholar
Kaufmann, C, Beucke, JC, Preuße, F, Endrass, T, Schlagenhauf, F, Heinz, A, Juckel, G, Kathmann, N (2013). Medial prefrontal brain activation to anticipated reward and loss in obsessive–compulsive disorder. NeuroImage: Clinical 2, 212220.Google Scholar
Kennerley, SW, Behrens, TEJ, Wallis, JD (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience 14, 15811589.CrossRefGoogle ScholarPubMed
Kennerley, SW, Walton, ME, Behrens, TEJ, Buckley, MJ, Rushworth, MFS (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience 9, 940947.Google Scholar
Lau, B, Glimcher, PW (2005). Dynamic response-by-response models of matching behavior in rhesus monkeys. Journal of the Experimental Analysis of Behavior 84, 555579.CrossRefGoogle ScholarPubMed
Maia, TV, Cano-Colino, M (2015). The role of serotonin in orbitofrontal function and obsessive–compulsive disorder. Clinical Psychological Science 3, 460482.Google Scholar
Maia, TV, Cooney, RE, Peterson, BS (2008). The neural bases of obsessive–compulsive disorder in children and adults. Development and Psychopathology 20, 12511283.CrossRefGoogle ScholarPubMed
Maia, TV, Frank, MJ (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience 14, 154162.Google Scholar
Menzies, L, Chamberlain, SR, Laird, AR, Thelen, SM, Sahakian, BJ, Bullmore, ET (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Neuroscience and Biobehavioral Reviews 32, 525549.Google Scholar
Montague, PR, Dayan, P, Sejnowski, TJ (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience 16, 19361947.Google Scholar
Nielen, MM, den Boer, JA, Smid, HGOM (2009). Patients with obsessive–compulsive disorder are impaired in associative learning based on external feedback. Psychological Medicine 39, 15191526.Google Scholar
Nieuwenhuis, S, Nielen, MM, Mol, N, Hajcak, G, Veltman, DJ (2005). Performance monitoring in obsessive–compulsive disorder. Psychiatry Research 134, 111122.Google Scholar
Niv, Y, Edlund, JA, Dayan, P, O'Doherty, JP (2012). Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 32, 551562.Google Scholar
O'Toole, SAL, Weinborn, M, Fox, AM (2012). Performance monitoring among non-patients with obsessive–compulsive symptoms: ERP evidence of aberrant feedback monitoring. Biological Psychology 91, 221228.Google Scholar
Pauls, DL, Abramovitch, A, Rauch, SL, Geller, DA (2014). Obsessive–compulsive disorder: an integrative genetic and neurobiological perspective. Nature Reviews. Neuroscience 15, 410424.Google Scholar
Pessiglione, M, Seymour, B, Flandin, G, Dolan, RJ, Frith, CD (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 10421045.CrossRefGoogle ScholarPubMed
Pitman, RK (1987). A cybernetic model of obsessive–compulsive psychopathology. Comprehensive Psychiatry 28, 334343.Google Scholar
Reiter, AM, Koch, SP, Schröger, E, Hinrichs, H, Heinze, HJ, Deserno, L, Schlagenhauf, F (2016). The feedback-related negativity code components of abstract inference during reward-based decision-making. Journal of Cognitive Neuroscience 28, 11271138.Google Scholar
Remijnse, PL, Nielen, MMA, van Balkom, AJLM, Cath, DC, van Oppen, P, Uylings, HBM, Veltman, DJ (2006). Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive–compulsive disorder. Archives of General Psychiatry 63, 12251236.Google Scholar
Remijnse, PL, Nielen, MMA, van Balkom, AJLM, Hendriks, G-J, Hoogendijk, WJ, Uylings, HBM, Veltman, DJ (2009). Differential frontal–striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive–compulsive disorder. Psychological Medicine 39, 15031518.Google Scholar
Riesel, A, Endrass, T, Auerbach, LA, Kathmann, N (2015). Overactive performance monitoring as an endophenotype for obsessive–compulsive disorder: evidence from a treatment study. American Journal of Psychiatry 172, 665673.Google Scholar
Riesel, A, Endrass, T, Kaufmann, C, Kathmann, N (2011). Overactive error-related brain activity as a candidate endophenotype for obsessive–compulsive disorder: evidence from unaffected first-degree relatives. American Journal of Psychiatry 168, 317324.Google Scholar
Rück, C, Karlsson, A, Steele, JD, Edman, G, Meyerson, BA, Ericson, K, Nyman, H, Asberg, M, Svanborg, P (2008). Capsulotomy for obsessive–compulsive disorder: long-term follow-up of 25 patients. Archives of General Psychiatry 65, 914921.Google Scholar
Rushworth, MFS, Noonan, MP, Boorman, ED, Walton, ME, Behrens, TEJ (2011). Frontal cortex and reward-guided learning and decision-making. Neuron 70, 10541069.Google Scholar
Rutledge, RB, Dean, M, Caplin, A, Glimcher, PW (2010). Testing the reward prediction error hypothesis with an axiomatic model. Journal of Neuroscience: the Official Journal of the Society for Neuroscience 30, 1352513536.Google Scholar
Sachdev, PS, Malhi, GS (2005). Obsessive–compulsive behaviour: a disorder of decision-making. Australian and New Zealand Journal of Psychiatry 39, 757763.Google Scholar
Sambrook, TD, Goslin, J (2014). Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors. Neuropsychologia 61, 110.Google Scholar
Saxena, S, Brody, AL, Schwartz, JM, Baxter, LR (1998). Neuroimaging and frontal–subcortical circuitry in obsessive–compulsive disorder. British Journal of Psychiatry. Supplement, issue 35, 2637.CrossRefGoogle ScholarPubMed
Schultz, W, Dayan, P, Montague, PR (1997). A neural substrate of prediction and reward. Science 275, 15931599.Google Scholar
Seymour, B, Daw, ND, Roiser, JP, Dayan, P, Dolan, RJ (2012). Serotonin selectively modulates reward value in human decision-making. Journal of Neuroscience 32, 58335842.Google Scholar
Stephan, KE, Penny, WD, Daunizeau, J, Moran, RJ, Friston, KJ (2009). Bayesian model selection for group studies. NeuroImage 46, 10041017.Google Scholar
Stern, ER, Welsh, RC, Fitzgerald, KD, Gehring, WJ, Lister, JJ, Himle, JA, Abelson, JL, Taylor, SF (2011). Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive–compulsive disorder. Biological Psychiatry 69, 583591.Google Scholar
Sutton, RS, Barto, AG (1998). Reinforcement Learning: An Introduction. MIT Press: Cambridge, MA.Google Scholar
Talmi, D, Atkinson, R, El-Deredy, W (2013). The feedback-related negativity signals salience prediction errors, not reward prediction errors. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 33, 82648269.CrossRefGoogle Scholar
Ullsperger, M, Fischer, AG, Nigbur, R, Endrass, T (2014). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Sciences 18, 259267.Google Scholar
Valerius, G, Lumpp, A, Kuelz, A-K, Freyer, T, Voderholzer, U (2008). Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. Journal of Neuropsychiatry and Clinical Neurosciences 20, 210218.CrossRefGoogle ScholarPubMed
van den Heuvel, OA, van der Werf, YD, Verhoef, KMW, de Wit, S, Berendse, HW, Wolters, EC, Veltman, DJ, Groenewegen, HJ (2010). Frontal–striatal abnormalities underlying behaviours in the compulsive–impulsive spectrum. Journal of the Neurological Sciences 289, 5559.Google Scholar
Voon, V, Derbyshire, K, Rück, C, Irvine, MA, Worbe, Y, Enander, J, Schreiber, LRN, Gillan, C, Fineberg, NA, Sahakian, BJ, Robbins, TW, Harrison, NA, Wood, J, Daw, ND, Dayan, P, Grant, JE, Bullmore, ET (2015). Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry 20, 345352.CrossRefGoogle ScholarPubMed
Waldmann, H-C (2008). Kurzformen des HAWIK-IV: Statistische Bewertung in verschiedenen Anwendungsszenarien. Diagnostica 54, 202210.Google Scholar
Walitza, S, Brem, S, Hauser, TU, Grünblatt, E (2014). Wie biologisch sind Zwangsstörungen? Kindheit und Entwicklung 23, 7585.CrossRefGoogle Scholar
Walitza, S, Melfsen, S, Jans, T, Zellmann, H, Wewetzer, C, Warnke, A (2011). Obsessive–compulsive disorder in children and adolescents. Deutsches Ärzteblatt International 108, 173179.Google Scholar
Walitza, S, Wendland, JR, Gruenblatt, E, Warnke, A, Sontag, TA, Tucha, O, Lange, KW (2010). Genetics of early-onset obsessive–compulsive disorder. European Child and Adolescent Psychiatry 19, 227235.Google Scholar
Walsh, MM, Anderson, JR (2012). Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews 36, 18701884.Google Scholar
Wittchen, H-U, Zaudig, M, Fydrich, T (1997). SKID: Strukturiertes Klinisches Interview für DSM-IV. Hogrefe: Göttingen.Google Scholar
Xiao, Z, Wang, J, Zhang, M, Li, H, Tang, Y, Wang, Y, Fan, Q, Fromson, JA (2011). Error-related negativity abnormalities in generalized anxiety disorder and obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 35, 265272.Google Scholar
Supplementary material: File

Hauser supplementary material

Hauser supplementary material

Download Hauser supplementary material(File)
File 711.7 KB