Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T15:57:47.812Z Has data issue: false hasContentIssue false

Heritability of specific cognitive functions and associations with schizophrenia spectrum disorders using CANTAB: a nation-wide twin study

Published online by Cambridge University Press:  11 August 2020

Cecilie K. Lemvigh*
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
Rachel M. Brouwer
Affiliation:
Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
Christos Pantelis
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
Maria H. Jensen
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark
Rikke W. Hilker
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Christian S. Legind
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Mental Health Center North Zealand, Hilleroed, Denmark
Simon J. Anhøj
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Psychiatry Svendborg, Baagoes Alle 25, 5700 Svendborg, Denmark
Trevor W. Robbins
Affiliation:
Department of Psychology, University of Cambridge, Cambridge, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
Barbara J. Sahakian
Affiliation:
Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
Birte Y. Glenthøj
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Birgitte Fagerlund
Affiliation:
Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
*
Author for correspondence: Cecilie K. Lemvigh, E-mail: cecilie.koldbaek.lemvigh@regionh.dk

Abstract

Background

Many cognitive functions are under strong genetic control and twin studies have demonstrated genetic overlap between some aspects of cognition and schizophrenia. How the genetic relationship between specific cognitive functions and schizophrenia is influenced by IQ is currently unknown.

Methods

We applied selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) to examine the heritability of specific cognitive functions and associations with schizophrenia liability. Verbal and performance IQ were estimated using The Wechsler Adult Intelligence Scale-III and the Danish Adult Reading Test. In total, 214 twins including monozygotic (MZ = 32) and dizygotic (DZ = 22) pairs concordant or discordant for a schizophrenia spectrum disorder, and healthy control pairs (MZ = 29, DZ = 20) were recruited through the Danish national registers. Additionally, eight twins from affected pairs participated without their sibling.

Results

Significant heritability was observed for planning/spatial span (h2 = 25%), self-ordered spatial working memory (h2 = 64%), sustained attention (h2 = 56%), and movement time (h2 = 47%), whereas only unique environmental factors contributed to set-shifting, reflection impulsivity, and thinking time. Schizophrenia liability was associated with planning/spatial span (rph = −0.34), self-ordered spatial working memory (rph = −0.24), sustained attention (rph = −0.23), and set-shifting (rph = −0.21). The association with planning/spatial span was not driven by either performance or verbal IQ. The remaining associations were shared with performance, but not verbal IQ.

Conclusions

This study provides further evidence that some cognitive functions are heritable and associated with schizophrenia, suggesting a partially shared genetic etiology. These functions may constitute endophenotypes for the disorder and provide a basis to explore genes common to cognition and schizophrenia.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R., Fagerlund, B., Rasmussen, H., Ebdrup, B. H., Aggernaes, B., Gade, A., … Glenthoj, B. (2011). Cognitive effects of six months of treatment with quetiapine in antipsychotic-naïve first-episode schizophrenia. Psychiatry Research, 187(1–2), 4954. https://doi.org/10.1016/j.psychres.2010.10.013.CrossRefGoogle ScholarPubMed
Axelrod, B. N. (2002). Validity of the Wechsler Abbreviated Scale of Intelligence and other very short forms of estimating intellectual functioning. Assessment, 9(1), 1723. https://doi.org/10.1177/1073191102009001003.CrossRefGoogle ScholarPubMed
Barnett, J. H., Robbins, T. W., Leeson, V. C., Sahakian, B. J., Joyce, E. M., & Blackwell, A. D. (2010). Assessing cognitive function in clinical trials of schizophrenia. Neuroscience and Biobehavioral Reviews, 34(8), 11611177. https://doi.org/10.1016/j.neubiorev.2010.01.012.CrossRefGoogle ScholarPubMed
Bech, P. (2002). The Bech-Rafaelsen Mania Scale in clinical trials of therapies for bipolar disorder. A 20–year review of its use as outcome measure. CNS Drugs, 16, 4763.CrossRefGoogle ScholarPubMed
Blokland, G. A. M., Mesholam-Gately, R. I., Toulopoulou, T., Del Re, E. C., Lam, M., Delisi, L. E., … Petryshen, T. L. (2017). Heritability of neuropsychological measures in schizophrenia and nonpsychiatric populations: A systematic review and meta-analysis. Schizophrenia Bulletin, 43(4), 788800. https://doi.org/10.1093/schbul/sbw146.CrossRefGoogle ScholarPubMed
Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., Kahn, R. S., & Hulshoff Pol, H. E. (2016). Genetic variation in schizophrenia liability is shared with intellectual ability and brain structure. Schizophrenia Bulletin, 42(5), 11671175. https://doi.org/10.1093/schbul/sbw034.CrossRefGoogle ScholarPubMed
Bowie, C. R., Reichenberg, A., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2006). Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. American Journal of Psychiatry, 163(3), 418425. https://doi.org/10.1176/appi.ajp.163.3.418.CrossRefGoogle ScholarPubMed
Braff, D. L., Freedman, R., Schork, N. J., & Gottesman, I. I. (2007). Deconstructing schizophrenia: An overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin, 33(1), 2132. https://doi.org/10.1093/schbul/sbl049.CrossRefGoogle ScholarPubMed
Bright, P., & van der Linde, I. (2018). Comparison of methods for estimating premorbid intelligence. Neuropsychological Rehabilitation, 30(1), 114. https://doi.org/10.1080/09602011.2018.1445650.CrossRefGoogle ScholarPubMed
Cambridge Cognition Ltd. (2013). CANTAB® normative data. Cambridge: Cambridge Cognition Ltd.Google Scholar
Ceaser, A. E., Goldberg, T. E., Egan, M. F., McMahon, R. P., Weinberger, D. R., & Gold, J. M. (2008). Set-shifting ability and schizophrenia: A marker of clinical illness or an intermediate phenotype? Biological Psychiatry, 64(9), 782788. https://doi.org/10.1016/j.biopsych.2008.05.009.CrossRefGoogle ScholarPubMed
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201211. https://doi.org/10.1038/nrn2793.CrossRefGoogle ScholarPubMed
Dickinson, D., Goldberg, T. E., Gold, J. M., Elvevg, B., & Weinberger, D. R. (2011). Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls. Schizophrenia Bulletin, 37(6), 11571167. https://doi.org/10.1093/schbul/sbq018.CrossRefGoogle ScholarPubMed
Dominicus, A., Skrondal, A., Gjessing, H. K., Pedersen, N. L., & Palmgren, J. (2006). Likelihood ratio tests in behavioral genetics: Problems and solutions. Behavior Genetics, 36(2), 331340. https://doi.org/10.1007/s10519-005-9034-7.CrossRefGoogle ScholarPubMed
Evenden, J., Morris, R., Owen, A., Robbins, T., Roberts, A., & Sahakian, B. (2013). CANTABeclipseTM test administration guide (manual ver). Cambridge: Cambridge Cognition Limited.Google Scholar
Fagerlund, B., Mackeprang, T., Gade, A., Hemmingsen, R., & Glenthøj, B. Y. (2004). Effects of low-dose risperidone and low-dose zuclopenthixol on cognitive functions in first-episode drug-naïve schizophrenic patients. CNS Spectrums, 9(5), 364374. https://doi.org/10.1017/S1092852900009354.CrossRefGoogle ScholarPubMed
Fagerlund, B., Pagsberg, A. K., & Hemmingsen, R. P. (2006). Cognitive deficits and levels of IQ in adolescent onset schizophrenia and other psychotic disorders. Schizophrenia Research, 85(1–3), 3039. https://doi.org/10.1016/j.schres.2006.03.004.CrossRefGoogle ScholarPubMed
Fioravanti, M., Bianchi, V., & Cinti, M. E. (2012). Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatry, 12(64), 120.CrossRefGoogle ScholarPubMed
Fowler, T., Zammit, S., Owen, M. J., & Rasmussen, F. (2012). A population-based study of shared genetic variation between premorbid IQ and psychosis among male twin pairs and sibling pairs from Sweden. Archives of General Psychiatry, 69(5), 460466. https://doi.org/10.1001/archgenpsychiatry.2011.1370.Google ScholarPubMed
Goldberg, T. E., Goldman, R. S., Burdick, K. E., Malhotra, A. K., Lencz, T., Patel, R. C., … Robinson, D. G. (2007). Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: Is it a practice effect? Archives of General Psychiatry, 64(10), 11151122. https://doi.org/10.1001/archpsyc.64.10.1115.CrossRefGoogle ScholarPubMed
Gonçalves, M. M., Pinho, M. S., & Simões, M. R. (2016). Applied Neuropsychology: Adult Test – retest reliability analysis of the Cambridge Neuropsychological Automated Tests for the assessment of dementia in older people living in retirement homes. Applied Neuropsychology: Adult, 23(4), 251263. https://doi.org/10.1080/23279095.2015.1053889.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636645. https://doi.org/10.1176/appi.ajp.160.4.636.CrossRefGoogle ScholarPubMed
Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the ‘right stuff’? Schizophrenia Bulletin, 26(1), 119136. https://doi.org/10.1093/oxfordjournals.schbul.a033430.CrossRefGoogle Scholar
Greenwood, T. A., Braff, D. L., Light, G. A., Cadenhead, K. S., Calkins, M. E., Dobie, D. J, … Schork, N. J. (2014). Initial heritability analyses of endophenotypic measures for schizophrenia. Archives of General Psychiatry, 64(11), 12421250.CrossRefGoogle Scholar
Gur, R. C. R. E., Calkins, M. E., Gur, R. C. R. E., Horan, W. P., Nuechterlein, K. H., Seidman, L. J., & Stone, W. S. (2007). The consortium on the genetics of schizophrenia: Neurocognitive endophenotypes. Schizophrenia Bulletin, 33(1), 4968. https://doi.org/10.1093/schbul/sbl055.CrossRefGoogle Scholar
Hamilton, M. (1967). Development of a rating scale for primary depressive illness. The British Journal of Social and Clinical Psychology, 6, 278296.CrossRefGoogle ScholarPubMed
Hamilton, M. (1969). Diagnosis and rating of anxiety. British Journal of Psychiatry, 3, 7679.Google Scholar
Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., … Glenthøj, B. (2017). Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register. Biological Psychiatry, 83(6), 492498. https://doi.org/10.1016/j.biopsych.2017.08.017.CrossRefGoogle ScholarPubMed
Hubbard, L., Tansey, K. E., Rai, D., Jones, P., Ripke, S., Chambert, K. D., … Zammit, S. (2016). Evidence of common genetic overlap between schizophrenia and cognition. Schizophrenia Bulletin, 42(3), 832842. https://doi.org/10.1093/schbul/sbv168.CrossRefGoogle ScholarPubMed
Jepsen, J. R. M., Fagerlund, B., Pagsberg, A. K., Christensen, A. M. R., Nordentoft, M., & Mortensen, E. L. (2010). Deficient maturation of aspects of attention and executive functions in early onset schizophrenia. European Child and Adolescent Psychiatry, 19(10), 773786. https://doi.org/10.1007/s00787-010-0126-4.CrossRefGoogle ScholarPubMed
Joyce, E. M., Hutton, S. B., Mutsatsa, S. H., & Barnes, T. R. E. (2005). Cognitive heterogeogeneity in first-episode schizophrenia. British Journal of Psychiatry, 187, 516522.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. https://doi.org/10.1093/schbul/13.2.261.CrossRefGoogle Scholar
Legind, C., Broberg, B., Brouwer, R., Mandl, R., Ebdrup, B., Anhøj, S., … Rostrup, E. (2019a). Heritability of cerebral blood flow and the correlation to schizophrenia spectrum disorders: A pseudo-continuous arterial spin labeling twin study. Schizophrenia Bulletin, 45(6), 12311241, https://doi.org/10.1093/schbul/sbz007.CrossRefGoogle Scholar
Legind, C., Broberg, B., Mandl, R., Brouwer, R., Anhøj, S., Hilker, R., … Glenthøj, B. (2019b). Heritability of cerebral glutamate levels and their association with schizophrenia spectrum disorders: A 1[H]-spectroscopy twin study. Neuropsychopharmacology, 44(3), 581589. https://doi.org/10.1038/s41386-018-0236-0.CrossRefGoogle Scholar
Leucht, S., Kane, J. M., Kissling, W., Hamann, J., Etschel, E., & Engel, R. R. (2005). What does the PANSS mean? Schizophrenia Research, 79(2–3), 231238. https://doi.org/10.1016/j.schres.2005.04.008.CrossRefGoogle ScholarPubMed
Levaux, M. N., Potvin, S., Sepehry, A. A., Sablier, J., Mendrek, A., & Stip, E. (2007). Computerized assessment of cognition in schizophrenia: Promises and pitfalls of CANTAB. European Psychiatry, 22(2), 104115. https://doi.org/10.1016/j.eurpsy.2006.11.004.CrossRefGoogle ScholarPubMed
Lowe, C., & Rabbitt, P. (1998). Test/re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: Theoretical and practical issues. Neuropsychologia, 36(9), 915923. https://doi.org/10.1016/S0028-3932(98)00036-0.CrossRefGoogle ScholarPubMed
Martin, A. K., Mowry, B., Reutens, D., & Robinson, G. A. (2015). Executive functioning in schizophrenia: Unique and shared variance with measures of fluid intelligence. Brain and Cognition, 99, 5767. https://doi.org/10.1016/j.bandc.2015.07.009.CrossRefGoogle ScholarPubMed
Meier, M. H., Caspi, A., Reichenberg, A., Keefe, R. S. E., Fisher, H. L., Harrington, H., … Moffitt, T. E. (2014). Neuropsychological decline in schizophrenia from the premorbid to the postonset period: Evidence from a population-representative longitudinal study. American Journal of Psychiatry, 171(1), 91101. https://doi.org/10.1176/appi.ajp.2013.12111438.CrossRefGoogle Scholar
Mors, O., Perto, G. P., & Mortensen, P. B. (2011). The Danish Psychiatric Central Research Register. Scandinavian Journal of Public Health, 39(7_suppl), 5457. https://doi.org/10.1177/1403494810395825.CrossRefGoogle ScholarPubMed
Nelson, H. E., & O'Connell, A. (1978). Dementia: The estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex, 14, 234244.CrossRefGoogle ScholarPubMed
O'Connor, M., Harris, J. M., McIntosh, A. M., Owens, D. G. C., Lawrie, S. M., & Johnstone, E. C. (2009). Specific cognitive deficits in a group at genetic high risk of schizophrenia. Psychological Medicine, 39(10), 1649. https://doi.org/10.1017/s0033291709005303.CrossRefGoogle Scholar
Owens, S. F., Picchioni, M. M., Rijsdijk, F. V., Stahl, D., Vassos, E., Rodger, A. K., … Toulopoulou, T. (2011a). Genetic overlap between episodic memory deficits and schizophrenia: Results from the Maudsley Twin Study. Psychological Medicine, 41(3), 521532. https://doi.org/10.1017/S0033291710000942.CrossRefGoogle Scholar
Owens, S. F., Rijsdijk, F., Picchioni, M. M., Stahl, D., Nenadic, I., Murray, R. M., & Toulopoulou, T. (2011b). Genetic overlap between schizophrenia and selective components of executive function. Schizophrenia Research, 127(1–3), 181187. https://doi.org/10.1016/j.schres.2010.10.010.CrossRefGoogle Scholar
Pantelis, C., Barnes, T. R., Nelson, H. E., Tanner, S., Weatherley, L., Owen, A. M., & Robbins, T. W. (1997). Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain, 120, 18231843. https://doi.org/10.1093/brain/120.10.1823.CrossRefGoogle ScholarPubMed
Pantelis, C., Wannan, C., Bartholomeusz, C., Allott, K., & McGorry, P. (2015). Cognitive intervention in early psychosis – preserving abilities versus remediating deficits. Current Opinion in Behavioral Sciences, 4, 6372. https://doi.org/10.1016/j.cobeha.2015.02.008.CrossRefGoogle Scholar
Pantelis, C., Wood, S., Proffitt, T., Testa, R., Mahony, K., Brewer, W., … McGorry, P. (2009). Attentional set-shifting ability in first-episode and established schizophrenia: Relationship to working memory. Schizophrenia Research, 112(1–3), 104113. https://doi.org/10.1016/j.schres.2009.03.039.CrossRefGoogle ScholarPubMed
Rijsdijk, F. V, & Sham, P. C. (2002). Analytic approaches to twin data using structural equation models. Briefings in Bioinformatics, 3(2), 119133. https://doi.org/10.1093/bib/3.2.119.CrossRefGoogle ScholarPubMed
Rinaldi, L., & Karmiloff-Smith, A. (2017). Intelligence as a developing function: A neuroconstructivist approach. Journal of Intelligence, 5(2), 126. https://doi.org/10.3390/jintelligence5020018.CrossRefGoogle ScholarPubMed
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., Mcinnes, L., & Rabbitt, P. M. A. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4(5), 474490. https://doi.org/10.1017/S1355617798455073.CrossRefGoogle Scholar
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbit, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia (Basel, Switzerland), 5(5), 266281. https://doi.org/10.1159/000106735.Google ScholarPubMed
Roca, M., Manes, F., Cetkovich, M., Bruno, D., Ibanez, A., Torralva, T., & Duncan, J. (2014). The relationship between executive functions and fluid intelligence in schizophrenia. Frontiers in Behavioral Neuroscience, 8(February), 18. https://doi.org/10.3389/fnbeh.2014.00046.CrossRefGoogle Scholar
Russell, A. J., Munro, J., Jones, P. B., Hayward, P., Hemsley, D. R., & Murray, R. M. (2000). The National Adult Reading Test as a measure of premorbid IQ in schizophrenia. British Journal of Clinical Psychology, 39(3), 297305. https://doi.org/http://dx.doi.org/10.1348/014466500163301.CrossRefGoogle Scholar
Sahakian, B.J, & Owen, A.M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85(7), 399402.Google ScholarPubMed
Saperstein, A. M., Fuller, R. L., Avila, M. T., Adami, H., McMahon, R. P., Thaker, G. K., & Gold, J. M. (2006). Spatial working memory as a cognitive endophenotype of schizophrenia: Assessing risk for pathophysiological dysfunction. Schizophrenia Bulletin, 32(3), 498506. https://doi.org/10.1093/schbul/sbj072.CrossRefGoogle ScholarPubMed
Singer, J. J., MacGregor, A. J., Cherkas, L. F., & Spector, T. D. (2006). Genetic influences on cognitive function using The Cambridge Neuropsychological Test Automated Battery. Intelligence, 34(5), 421428. https://doi.org/10.1016/j.intell.2005.11.005.CrossRefGoogle Scholar
Sitskoorn, M. M., Aleman, A., Ebisch, S. J. H., Appels, M. C. M., & Kahn, R. S. (2004). Cognitive deficits in relatives of patients with schizophrenia: A meta-analysis. Schizophrenia Research, 71(2–3), 285295. https://doi.org/10.1016/j.schres.2004.03.007.CrossRefGoogle ScholarPubMed
Skytthe, A., Ohm Kyvik, K., Vilstrup Holm, N., & Christensen, K. (2011). The Danish Twin Registry. Scandinavian Journal of Public Health, 39(7_suppl), 7578. https://doi.org/10.1177/1403494810387966.CrossRefGoogle ScholarPubMed
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., … Posthuma, D. (2017). Genome-wide association meta-analysis of 78308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 11071112. https://doi.org/10.1038/ng.3869.CrossRefGoogle ScholarPubMed
Snitz, B. E., MacDonald, A. W., & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: A meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32(1), 179194. https://doi.org/10.1093/schbul/sbi048.CrossRefGoogle ScholarPubMed
Steves, C. J., Jackson, S. H. D., & Spector, T. D. (2013). Cognitive change in older women using a computerised battery: A longitudinal quantitative genetic twin study. Behavior Genetics, 43(6), 468479. https://doi.org/10.1007/s10519-013-9612-z.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait. Archives of General Psychiatry, 60, 11871192. https://doi.org/10.1001/archpsyc.60.12.1187.CrossRefGoogle ScholarPubMed
Toulopoulou, T., Goldberg, T. E., Mesa, I. R., Picchioni, M., Rijsdijk, F., Stahl, D., … Murray, R. M. (2010). Impaired intellect and memory: A missing link between genetic risk and schizophrenia? Archives of General Psychiatry, 67(9), 905913.CrossRefGoogle Scholar
Toulopoulou, T., Picchioni, M., Rijsdijk, F., Hua-Hall, M., Ettinger, U., Sham, P., & Murray, R. (2007). Substantial genetic overlap between neurocognition and schizophrenia. Archives of General Psychiatry, 64(12), 13481355. https://doi.org/10.1001/archpsyc.64.12.1348.CrossRefGoogle Scholar
Toulopoulou, T., Van Haren, N., Zhang, X., Sham, P. C., Cherny, S. S., Campbell, D. D., … Kahn, R. S. (2015). Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. Molecular Psychiatry, 20(11), 13861396. https://doi.org/10.1038/mp.2014.152.CrossRefGoogle Scholar
Toulopoulou, T., Zhang, X., Cherny, S., Dickinson, D., Berman, K. F., Straub, R. E., … Weinberger, D. R. (2018). Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain, 142(2), 471485. https://doi.org/10.1093/brain/awy279.CrossRefGoogle Scholar
Visscher, P. M., Gordon, S., & Neale, M. C. (2008). Power of the classical twin design revisited: II Detection of common environmental variance. Twin Research and Human Genetics, 11(1), 4854. https://doi.org/10.1375/twin.11.1.48.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Manual for the Wechsler Adult Intelligence Scale – third edition (WAIS-III). San Antonio, TX: The Psychological Corporation.Google Scholar
Wing, J. K., Babor, T., Brugha, T., Burke, J., Cooper, J. E., Giel, R., … Sartorius, N. (1990). SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Archives of General Psychiatry, 47(6), 589593.CrossRefGoogle ScholarPubMed
Wood, S. J., Pantelis, C., Proffitt, T., Philips, L. J., Stuart, G. W., Buchanan, J. A., … McGorry, P. D. (2003). Spatial working memory ability is a marker of risk-for-psychosis. Psychological Medicine, 33(7), 12391247. https://doi.org/10.1017/S0033291703008067.CrossRefGoogle ScholarPubMed
Wykes, T., Huddy, V., Cellard, C., Mcgurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. (May), 168, 472486.Google ScholarPubMed
Zhou, H. yu, Li, Z., Xie, D. jie, Xu, T., Cheung, E. E. F., Li, H., & Chan, R. C. K. (2018). Heritability estimates of spatial working memory and set-shifting in a healthy Chinese twin sample: A preliminary study. PsyCh Journal, 7(3), 144151. https://doi.org/10.1002/pchj.227.CrossRefGoogle Scholar
Supplementary material: File

Lemvigh et al. supplementary material

Lemvigh et al. supplementary material

Download Lemvigh et al. supplementary material(File)
File 221.2 KB