Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T08:06:22.363Z Has data issue: false hasContentIssue false

Fronto-parietal white matter microstructural deficits are linked to performance IQ in a first-episode schizophrenia Han Chinese sample

Published online by Cambridge University Press:  14 December 2012

Q. Wang
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
C. Cheung
Affiliation:
Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
W. Deng
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
M. Li
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
C. Huang
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
X. Ma
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
Y. Wang
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
L. Jiang
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
G. McAlonan
Affiliation:
Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
P. Sham
Affiliation:
Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
D. A. Collier
Affiliation:
MRC SGDP Centre, Institute of Psychiatry, King's College London, London, UK
Q. Gong
Affiliation:
Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
S. E. Chua
Affiliation:
Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
T. Li*
Affiliation:
The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
*
*Address for correspondence: T. Li, Ph.D., M.D., 20#, Dian Xun Nan Jie, Chengdu, Sichuan Province, People's Republic of China, 610041. (Email: xuntao26@hotmail.com)

Abstract

Background

Evidence shows that cognitive deficits and white matter (WM) dysconnectivity can independently be associated with clinical manifestations in schizophrenia. It is important to explore this triadic relationship in order to investigate whether the triplet could serve as potential extended endophenotypes of schizophrenia.

Method

Diffusion tensor images and clinical performances were evaluated in 122 individuals with first-episode schizophrenia and 122 age- and gender-matched controls. In addition, 65 of 122 of the patient group and 40 of 122 controls were measured using intelligence quotient (IQ) testing.

Results

The schizophrenia group showed lower fractional anisotropy (FA) values than controls in the right cerebral frontal lobar sub-gyral (RFSG) WM. The schizophrenia group also showed a significant positive correlation between FA in the RFSG and performance IQ (PIQ); in turn, their PIQ score showed a significant negative correlation with negative syndromes.

Conclusions

Overall, these findings support the hypothesis that WM deficits may be a core deficit that contributes to cognitive deficits as well as to negative symptoms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annett, M (1970). A classification of hand preference by association analysis. British Journal of Psychology 61, 303321.CrossRefGoogle ScholarPubMed
Ashburner, J, Friston, KJ (2005). Unified segmentation. Neuroimage 26, 839851.CrossRefGoogle ScholarPubMed
Bishop, SJ, Fossella, J, Croucher, CJ, Duncan, J (2008). COMT Val158Met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cerebral Cortex 18, 21322140.CrossRefGoogle ScholarPubMed
Camchong, J, Macdonald, AW 3rd, Bell, C, Mueller, BA, Lim, KO (2011). Altered functional and anatomical connectivity in schizophrenia. Schizophrenia Bulletin 37, 640650.CrossRefGoogle ScholarPubMed
Cavanna, AE, Trimble, MR (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564583.CrossRefGoogle ScholarPubMed
Cheung, V, Cheung, C, McAlonan, GM, Deng, Y, Wong, JG, Yip, L, Tai, KS, Khong, PL, Sham, P, Chua, SE (2008). A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychological Medicine 38, 877885.CrossRefGoogle ScholarPubMed
Cheung, V, Chiu, CPY, Law, CW, Cheung, C, Hui, CLM, Chan, KKS, Sham, PC, Deng, MY, Tai, KS, Khong, PL, McAlonan, GM, Chua, SE, Chen, E (2010). Positive symptoms and white matter microstructure in never-medicated first episode schizophrenia. Psychological Medicine 41, 17091719.CrossRefGoogle Scholar
Falkai, P, Honer, WG, David, S, Bogerts, B, Majtenyi, C, Bayer, TA (1999). No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathology and Applied Neurobiology 25, 4853.CrossRefGoogle ScholarPubMed
Firbank, MJ, Harrison, RM, Williams, ED, Coulthard, A (2000). Quality assurance for MRI: practical experience. British Journal of Radiology 73, 376383.CrossRefGoogle ScholarPubMed
Flint, J, Munafo, MR (2007). The endophenotype concept in psychiatric genetics. Psychological Medicine 37, 163180.CrossRefGoogle ScholarPubMed
Friston, KJ, Frith, CD (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience 3, 8997.Google ScholarPubMed
Foong, J, Maier, M, Clark, CA, Barker, GJ, Miller, DH, Ron, MA (2000). Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. Journal of Neurology, Neurosurgery & Psychiatry 68, 242244.CrossRefGoogle ScholarPubMed
Fujiwara, H, Namiki, C, Hirao, K, Miyata, J, Shimizu, M, Fukuyama, H, Sawamoto, N, Hayashi, T, Murai, T (2007). Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: a diffusion tensor imaging study. Schizophrenia Research 95, 215222.CrossRefGoogle ScholarPubMed
Gong, QY, Sluming, V, Mayes, A, Keller, S, Barrick, T, Cezayirli, E, Roberts, N (2005). Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. Neuroimage 25, 11751186.CrossRefGoogle ScholarPubMed
Gottesman, II, Gould, TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.CrossRefGoogle ScholarPubMed
Gray, JR, Chabris, CF, Braver, TS (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience 6, 316322.CrossRefGoogle ScholarPubMed
Greicius, MD, Supekar, K, Menon, V, Dougherty, RF (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex 19, 7278.CrossRefGoogle ScholarPubMed
Harrison, PJ, Weinberger, DR (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry 10, 4068.CrossRefGoogle ScholarPubMed
Harvey, PD, Green, MF, Bowie, C, Loebel, A (2006). The dimensions of clinical and cognitive change in schizophrenia: evidence for independence of improvements. Psychopharmacology 187, 356363.CrossRefGoogle ScholarPubMed
Ho, BC, Milev, P, O'Leary, DS, Librant, A, Andreasen, NC, Wassink, TH (2006). Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Archives of General Psychiatry 63, 731740.CrossRefGoogle ScholarPubMed
Hubl, D, Koenig, T, Strik, W, Federspiel, A, Kreis, R, Boesch, C, Maier, SE, Schroth, G, Lovblad, K, Dierks, T (2004). Pathways that make voices: white matter changes in auditory hallucinations. Archives of General Psychiatry 61, 658668.CrossRefGoogle ScholarPubMed
Jia, Z, Huang, X, Wu, Q, Zhang, T, Lui, S, Zhang, J, Amatya, N, Kuang, W, Chan, RC, Kemp, GJ, Mechelli, A, Gong, Q (2010). High-field magnetic resonance imaging of suicidality in patients with major depressive disorder. American Journal of Psychiatry 167, 13811390.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A, Opler, LA (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle ScholarPubMed
Kim, DI, Mathalon, DH, Ford, JM, Mannell, M, Turner, JA, Brown, GG, Belger, A, Gollub, R, Lauriello, J, Wible, C, O'Leary, D, Lim, K, Toga, A, Potkin, SG, Birn, F, Calhoun, VD (2009). Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. Schizophrenia Bulletin 35, 6781.CrossRefGoogle ScholarPubMed
Kubicki, M, McCarley, R, Westin, CF, Park, HJ, Maier, S, Kikinis, R, Jolesz, FA, Shenton, ME (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatry Research 41, 1530.CrossRefGoogle ScholarPubMed
Kyriakopoulos, M, Vyas, NS, Barker, GJ, Chitnis, XA, Frangou, S (2008). A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biological Psychiatry 63, 519523.CrossRefGoogle ScholarPubMed
Lee, K, Yoshida, T, Kubicki, M, Bouix, S, Westin, CF, Kindlmann, G, Niznikiewicz, M, Cohen, A, McCarley, RW, Shenton, ME (2009). Increased diffusivity in superior temporal gyrus in patients with schizophrenia: a diffusion tensor imaging study. Schizophrenia Research 108, 3340.CrossRefGoogle ScholarPubMed
Liu, Y, Liang, M, Zhou, Y, He, Y, Hao, Y, Song, M, Yu, C, Liu, H, Liu, Z, Jiang, T (2008). Disrupted small-world networks in schizophrenia. Brain 131, 945961.CrossRefGoogle ScholarPubMed
Michael, AM, Calhoun, VD, Pearlson, GD, Baum, SA, Caprihan, A (2008). Correlations of diffusion tensor imaging values and symptom scores in patients with schizophrenia. Conference Proceedings: IEEE Engineering in Medicine and Biology Society 2008, 54945497.Google ScholarPubMed
Minami, T, Nobuhara, K, Okugawa, G, Takase, K, Yoshida, T, Sawada, S, Ha-Kawa, S, Ikeda, K, Kinoshita, T (2003). Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology 47, 141145.CrossRefGoogle ScholarPubMed
Nestor, PG, Kubicki, M, Nakamura, M, Niznikiewicz, M, McCarley, RW, Shenton, ME (2010). Comparing prefrontal gray and white matter contributions to intelligence and decision making in schizophrenia and healthy controls. Neuropsychology 24, 121129.CrossRefGoogle ScholarPubMed
Nestor, PG, Kubicki, M, Spencer, KM, Niznikiewicz, M, McCarley, RW, Shenton, ME (2007). Attentional networks and cingulum bundle in chronic schizophrenia. Schizophrenia Research 90, 308315.CrossRefGoogle ScholarPubMed
Phillips, OR, Nuechterlein, KH, Clark, KA, Hamilton, LS, Asarnow, RF, Hageman, NS, Toga, AW, Narr, KL (2009). Fiber tractography reveals disruption of temporal lobe white matter tracts in schizophrenia. Schizophrenia Research 107, 3038.CrossRefGoogle ScholarPubMed
Prasad, KM, Keshavan, MS (2008). Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct ‘extended endophenotypes’? Schizophrenia Bulletin 34, 774790.CrossRefGoogle ScholarPubMed
Rotarska-Jagiela, A, Oertel-Knoechel, V, DeMartino, F, van de Ven, V, Formisano, E, Roebroeck, A, Rami, A, Schoenmeyer, R, Haenschel, C, Hendler, T, Maurer, K, Vogeley, K, Linden, DE (2009). Anatomical brain connectivity and positive symptoms of schizophrenia: a diffusion tensor imaging study. Psychiatry Research 174, 916.CrossRefGoogle ScholarPubMed
Schopp, LH, Callahan, CD, Johnstone, B, Schwake, CJ (1998). Utility of a seven-subtest version of the WAIS-R among an Alzheimer's disease sample. Archives of Clinical Neuropsychology 13, 637643.Google ScholarPubMed
Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW (2001). A review of MRI findings in schizophrenia. Schizophrenia Research 49, 152.CrossRefGoogle ScholarPubMed
Shergill, SS, Kanaan, RA, Chitnis, XA, O'Daly, O, Jones, DK, Frangou, S, Williams, SC, Howard, RJ, Barker, GJ, Murray, RM, McGuire, P (2007). A diffusion tensor imaging study of fasciculi in schizophrenia. American Journal of Psychiatry 164, 467473.CrossRefGoogle ScholarPubMed
Shin, YW, Kwon, JS, Ha, TH, Park, HJ, Kim, DJ, Hong, SB, Moon, WJ, Lee, JM, Kim, IY, Kim, SI, Chung, EC (2006). Increased water diffusivity in the frontal and temporal cortices of schizophrenic patients. Neuroimage 30, 12851291.CrossRefGoogle ScholarPubMed
Skelly, LR, Calhoun, V, Meda, SA, Kim, J, Mathalon, DH, Pearlson, GD (2008). Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophrenia Research 98, 157162.CrossRefGoogle ScholarPubMed
Ventura, J, Hellemann, GS, Thames, AD, Koellner, V, Nuechterlein, KH (2009). Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis. Schizophrenia Research 113, 189199.CrossRefGoogle ScholarPubMed
Wechsler, D (1999). WAIS-R Manual: Wechsler Adult Intelligence Scale – Revised. Psychological Corporation: San Antonio, TX.Google Scholar