Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T04:47:41.314Z Has data issue: false hasContentIssue false

Effects of a CACNA1C genotype on attention networks in healthy individuals

Published online by Cambridge University Press:  16 November 2010

M. Thimm*
Affiliation:
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
T. Kircher
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
T. Kellermann
Affiliation:
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
V. Markov
Affiliation:
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
S. Krach
Affiliation:
Section of Brain Imaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
A. Jansen
Affiliation:
Section of Brain Imaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
K. Zerres
Affiliation:
Institute of Human Genetics, RWTH Aachen University, Germany
T. Eggermann
Affiliation:
Institute of Human Genetics, RWTH Aachen University, Germany
T. Stöcker
Affiliation:
Institute of Neuroscience and Medicine 4, Jülich, Germany
N. J. Shah
Affiliation:
Institute of Neuroscience and Medicine 4, Jülich, Germany
M. M. Nöthen
Affiliation:
Institute of Human Genetics, University of Bonn, Germany Department of Genomics, Life and Brain Center, University of Bonn, Germany
M. Rietschel
Affiliation:
Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
S. H. Witt
Affiliation:
Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
K. Mathiak
Affiliation:
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
A. Krug
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany
*
*Address for correspondence: Dr M. Thimm, Department of Psychiatry and Psychotherapy, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany. (Email: mthimm@ukaachen.de)

Abstract

Background

Recent genetic studies found the A allele of the variant rs1006737 in the alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene to be over-represented in patients with psychosis, including schizophrenia, bipolar disorder and major depressive disorder. In these disorders, attention deficits are among the main cognitive symptoms and have been related to altered neural activity in cerebral attention networks. The particular effect of CACNA1C on neural function, such as attention networks, remains to be elucidated.

Method

The current event-related functional magnetic resonance imaging (fMRI) study investigated the effect of the CACNA1C gene on brain activity in 80 subjects while performing a scanner-adapted version of the Attention Network Test (ANT). Three domains of attention were probed simultaneously: alerting, orienting and executive control of attention.

Results

Risk allele carriers showed impaired performance in alerting and orienting in addition to reduced neural activity in the right inferior parietal lobule [Brodmann area (BA) 40] during orienting and in the medial frontal gyrus (BA 8) during executive control of attention. These areas belong to networks that have been related to impaired orienting and executive control mechanisms in neuropsychiatric disorders.

Conclusions

Our results suggest that CACNA1C plays a role in the development of specific attention deficits in psychiatric disorders by modulation of neural attention networks.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arts, B, Jabben, N, Krabbendam, L, van Os, J (2008). Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychological Medicine 38, 771785.Google Scholar
Becker, TM, Kerns, JG, Macdonald, AW III, Carter, CS (2008). Prefrontal dysfunction in first-degree relatives of schizophrenia patients during a Stroop task. Neuropsychopharmacology 33, 26192625.CrossRefGoogle ScholarPubMed
Bora, E, Yucel, M, Pantelis, C (2010). Cognitive impairment in affective psychoses: a meta-analysis. Schizophrenia Bulletin 36, 112125.Google Scholar
Botvinick, M, Nystrom, LE, Fissell, K, Carter, CS, Cohen, JD (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179181.CrossRefGoogle ScholarPubMed
Botvinick, MM, Braver, TS, Barch, DM, Carter, CS, Cohen, JD (2001). Conflict monitoring and cognitive control. Psychological Review 108, 624652.Google Scholar
Bush, G, Luu, P, Posner, MI (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4, 215222.Google Scholar
Carter, CS, Botvinick, MM, Cohen, JD (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences 10, 4957.Google Scholar
Carter, CS, Mintun, M, Nichols, T, Cohen, JD (1997). Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. American Journal of Psychiatry 154, 16701675.CrossRefGoogle ScholarPubMed
Chen, WJ, Faraone, SV (2000). Sustained attention deficits as markers of genetic susceptibility to schizophrenia. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics 97, 5257.Google Scholar
Corbetta, M, Kincade, JM, Ollinger, JM, McAvoy, MP, Shulman, GL (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience 3, 292297.CrossRefGoogle ScholarPubMed
Corbetta, M, Miezin, FM, Shulman, GL, Petersen, SE (1993). A PET study of visuospatial attention. Journal of Neuroscience 13, 12021226.CrossRefGoogle ScholarPubMed
Cornblatt, BA, Keilp, JG (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin 20, 3146.CrossRefGoogle ScholarPubMed
Elston, RC, Forthofer, R (1977). Testing for Hardy-Weinberg equilibrium in small samples. Biometrics 33, 536542.CrossRefGoogle Scholar
Fan, J, Flombaum, JI, McCandliss, BD, Thomas, KM, Posner, MI (2003 a). Cognitive and brain consequences of conflict. NeuroImage 18, 4257.CrossRefGoogle ScholarPubMed
Fan, J, Fossella, J, Sommer, T, Wu, Y, Posner, MI (2003 b). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences USA 100, 74067411.Google Scholar
Fan, J, McCandliss, BD, Fossella, J, Flombaum, JI, Posner, MI (2005). The activation of attentional networks. NeuroImage 26, 471479.CrossRefGoogle ScholarPubMed
Fan, J, McCandliss, BD, Sommer, T, Raz, A, Posner, MI (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience 14, 340347.Google Scholar
Fan, J, Raz, A, Posner, MI (2003 c). Attentional mechanisms. In Encyclopedia of Neurological Sciences, vol. 1 (ed. Aminoff, M. J. and Daroff, R. B.), pp. 292299. Academic Press: San Diego.Google Scholar
Fan, J, Wu, Y, Fossella, JA, Posner, MI (2001). Assessing the heritability of attentional networks. BMC Neuroscience 2, 14.CrossRefGoogle ScholarPubMed
Ferreira, MAR, O'Donovan, MC, Meng, YA, Jones, IR, Ruderfer, DM, Jones, L, Fan, J, Kirov, G, Perlis, RH, Green, EK, Smoller, JW, Grozeva, D, Stone, J, Nikolov, I, Chambert, K, Hamshere, ML, Nimgaonkar, VL, Moskvina, V, Thase, ME, Caesar, S, Sachs, GS, Franklin, J, Gordon-Smith, K, Ardlie, KG, Gabriel, SB, Fraser, C, Blumenstiel, B, Defelice, M, Breen, G, Gill, M, Morris, DW, Elkin, A, Muir, WJ, McGhee, KA, Williamson, R, MacIntyre, DJ, MacLean, AW, St Clair, D, Robinson, M, Van Beck, M, Pereira, ACP, Kandaswamy, R, McQuillin, A, Collier, DA, Bass, NJ, Young, AH, Lawrence, J, Ferrier, IN, Anjorin, A, Farmer, A, Curtis, D, Scolnick, EM, McGuffin, P, Daly, MJ, Corvin, AP, Holmans, PA, Blackwood, DH, Gurling, HM, Owen, MJ, Purcell, SM, Sklar, P, Craddock, N (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics 40, 10561058.CrossRefGoogle ScholarPubMed
Filbey, FM, Russell, T, Morris, RG, Murray, RM, McDonald, C (2008). Functional magnetic resonance imaging (fMRI) of attention processes in presumed obligate carriers of schizophrenia: preliminary findings. Annals of General Psychiatry 7, 18.CrossRefGoogle ScholarPubMed
Fink, GR, Marshall, JC, Weiss, PH, Toni, I, Zilles, K (2002). Task instructions influence the cognitive strategies involved in line bisection judgements: evidence from modulated neural mechanisms revealed by fMRI. Neuropsychologia 40, 119130.CrossRefGoogle ScholarPubMed
Gallinat, J, Bauer, M, Heinz, A (2008). Genes and neuroimaging: advances in psychiatric research. Neurodegenerative Diseases 5, 277285.Google Scholar
Garavan, H, Ross, TJ, Kaufman, J, Stein, EA (2003). A midline dissociation between error-processing and response-conflict monitoring. NeuroImage 20, 11321139.Google Scholar
Gooding, DC, Braun, JG, Studer, JA (2006). Attentional network task performance in patients with schizophrenia-spectrum disorders: evidence of a specific deficit. Schizophrenia Research 88, 169178.CrossRefGoogle ScholarPubMed
Gouzoulis-Mayfrank, E, Balke, M, Hajsamou, S, Ruhrmann, S, Schultze-Lutter, F, Daumann, J, Heekeren, K (2007). Orienting of attention in unmedicated patients with schizophrenia, prodromal subjects and healthy relatives. Schizophrenia Research 97, 3542.CrossRefGoogle ScholarPubMed
Green, EK, Grozeva, D, Jones, I, Jones, L, Kirov, G, Caesar, S, Gordon-Smith, K, Fraser, C, Forty, L, Russell, E, Hamshere, ML, Moskvina, V, Nikolov, I, Farmer, A, McGuffin, P, Holmans, PA, Owen, MJ, O'Donovan, MC, Craddock, N (2009). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry 15, 10161022.CrossRefGoogle ScholarPubMed
Gruber, SA, Rogowska, J, Yurgelun-Todd, DA (2004). Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. Journal of Affective Disorders 82, 191201.Google Scholar
Harrison, PJ, Weinberger, DR (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry 10, 4068.CrossRefGoogle ScholarPubMed
Heinrichs, RW, Zakzanis, KK (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12, 426445.CrossRefGoogle ScholarPubMed
Jansen, A, Krach, S, Krug, A, Markov, V, Eggermann, T, Zerres, K, Stocker, T, Shah, NJ, Nothen, MM, Treutlein, J, Rietschel, M, Kircher, T (2009). A putative high risk diplotype of the G72 gene is in healthy individuals associated with better performance in working memory functions and altered brain activity in the medial temporal lobe. NeuroImage 45, 10021008.Google Scholar
Kastner, S, Pinsk, MA, De Weerd, P, Desimone, R, Ungerleider, LG (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751761.CrossRefGoogle ScholarPubMed
Kircher, T, Krug, A, Markov, V, Whitney, C, Krach, S, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Treutlein, J, Nothen, MM, Becker, T, Rietschel, M (2009). Genetic variation in the schizophrenia-risk gene neuregulin 1 correlates with brain activation and impaired speech production in a verbal fluency task in healthy individuals. Human Brain Mapping 30, 34063416.CrossRefGoogle Scholar
Krug, A, Markov, V, Eggermann, T, Krach, S, Zerres, K, Stocker, T, Shah, NJ, Schneider, F, Nothen, MM, Treutlein, J, Rietschel, M, Kircher, T (2008). Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals. NeuroImage 42, 15691576.Google Scholar
Krug, A, Markov, V, Sheldrick, A, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Kircher, T (2009). The effect of the COMT val(158)met polymorphism on neural correlates of semantic verbal fluency. European Archives of Psychiatry and Clinical Neuroscience 259, 459465.Google Scholar
Krug, A, Nieratschker, V, Markov, V, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Treutlein, J, Muhleisen, TW, Kircher, T (2010). Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. NeuroImage 49, 18311836.CrossRefGoogle ScholarPubMed
Lehrl, S (2005). The Multiple-Choice Vocabulary Intelligence Test [in German]. Hogrefe: Göttingen.Google Scholar
Ma, X, Wang, Q, Sham, PC, Liu, X, Rabe-Hesketh, S, Sun, X, Hu, J, Meng, H, Chen, W, Chen, EY, Deng, W, Chan, RC, Murray, RM, Collier, DA, Li, T (2007). Neurocognitive deficits in first-episode schizophrenic patients and their first-degree relatives. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 144B, 407416.Google Scholar
Macdonald, AW III, Becker, TM, Carter, CS (2006). Functional magnetic resonance imaging study of cognitive control in the healthy relatives of schizophrenia patients. Biological Psychiatry 60, 12411249.Google Scholar
Macdonald, AW III, Cohen, JD, Stenger, VA, Carter, CS (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 18351838.Google Scholar
Macdonald, AW III, Thermenos, HW, Barch, DM, Seidman, LJ (2009). Imaging genetic liability to schizophrenia: systematic review of FMRI studies of patients' nonpsychotic relatives. Schizophrenia Bulletin 35, 11421162.CrossRefGoogle ScholarPubMed
Maldjian, JA, Laurienti, PJ, Kraft, RA, Burdette, JH (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19, 12331239.CrossRefGoogle ScholarPubMed
Markov, V, Krug, A, Krach, S, Whitney, C, Eggermann, T, Zerres, K, Stocker, T, Shah, NJ, Nothen, MM, Treutlein, J, Rietschel, M, Kircher, T (2009). Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. NeuroImage 47, 20162022.Google Scholar
Michie, PT, Kent, A, Stienstra, R, Castine, R, Johnston, J, Dedman, K, Wichmann, H, Box, J, Rock, D, Rutherford, E, Jablensky, A (2000). Phenotypic markers as risk factors in schizophrenia: neurocognitive functions. Australian and New Zealand Journal of Psychiatry 34 (Suppl.), S74S85.CrossRefGoogle ScholarPubMed
Moosmang, S, Haider, N, Klugbauer, N, Adelsberger, H, Langwieser, N, Muller, J, Stiess, M, Marais, E, Schulla, V, Lacinova, L, Goebbels, S, Nave, KA, Storm, DR, Hofmann, F, Kleppisch, T (2005 a). Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. Journal of Neuroscience 25, 98839892.CrossRefGoogle ScholarPubMed
Moosmang, S, Lenhardt, P, Haider, N, Hofmann, F, Wegener, JW (2005 b). Mouse models to study L-type calcium channel function. Pharmacology and Therapeutics 106, 347355.Google Scholar
Mort, DJ, Malhotra, P, Mannan, SK, Rorden, C, Pambakian, A, Kennard, C, Husain, M (2003). The anatomy of visual neglect. Brain 126, 19861997.Google Scholar
Mulet, B, Valero, J, Gutierrez-Zotes, A, Montserrat, C, Cortes, MJ, Jariod, M, Martorell, L, Vilella, E, Labad, A (2007). Sustained and selective attention deficits as vulnerability markers to psychosis. European Psychiatry 22, 171176.CrossRefGoogle ScholarPubMed
Nachev, P, Rees, G, Parton, A, Kennard, C, Husain, M (2005). Volition and conflict in human medial frontal cortex. Current Biology 15, 122128.Google Scholar
Nachev, P, Wydell, H, O'Neill, K, Husain, M, Kennard, C (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage 36 (Suppl. 2), T155T163.CrossRefGoogle ScholarPubMed
Nestor, PG, Kubicki, M, Gurrera, RJ, Niznikiewicz, M, Frumin, M, McCarley, RW, Shenton, ME (2004). Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology 18, 629637.Google Scholar
Nestor, PG, Kubicki, M, Spencer, KM, Niznikiewicz, M, McCarley, RW, Shenton, ME (2007). Attentional networks and cingulum bundle in chronic schizophrenia. Schizophrenia Research 90, 308315.CrossRefGoogle ScholarPubMed
Nestor, PG, O'Donnell, BF (1998). The mind adrift: attentional dysregulation in schizophrenia. In The Attentive Brain (ed. Parasuraman, R.), pp. 527546. MIT Press: Cambridge, MA.Google Scholar
Nyegaard, M, Demontis, D, Foldager, L, Hedemand, A, Flint, TJ, Sorensen, KM, Andersen, PS, Nordentoft, M, Werge, T, Pedersen, CB, Hougaard, DM, Mortensen, PB, Mors, O, Borglum, AD (2010). CACNA1C (rs1006737) is associated with schizophrenia. Molecular Psychiatry 15, 119121.CrossRefGoogle ScholarPubMed
Oldfield, RC (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113.CrossRefGoogle ScholarPubMed
Opgen-Rhein, C, Neuhaus, AH, Urbanek, C, Hahn, E, Sander, T, Dettling, M (2008). Executive attention in schizophrenic males and the impact of COMT Val108/158Met genotype on performance on the attention network test. Schizophrenia Bulletin 34, 12311239.CrossRefGoogle ScholarPubMed
O'Tuathaigh, CM, Babovic, D, O'Meara, G, Clifford, JJ, Croke, DT, Waddington, JL (2007). Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience and Biobehavioral Reviews 31, 6078.Google Scholar
Owen, MJ, Williams, NM, O'Donovan, MC (2004). The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry 9, 1427.Google Scholar
Pardo, JV, Fox, PT, Raichle, ME (1991). Localization of a human system for sustained attention by positron emission tomography. Nature 349, 6164.Google Scholar
Pardo, JV, Pardo, PJ, Humes, SW, Posner, I (2006). Neurocognitive dysfunction in antidepressant-free, non-elderly patients with unipolar depression: alerting and covert orienting of visuospatial attention. Journal of Affective Disorders 92, 7178.Google Scholar
Politis, A, Lykouras, L, Mourtzouchou, P, Christodoulou, GN (2004). Attentional disturbances in patients with unipolar psychotic depression: a selective and sustained attention study. Comprehensive Psychiatry 45, 452459.Google Scholar
Posner, MI, Early, TS, Reiman, E, Pardo, PJ, Dhawan, M (1988). Asymmetries in hemispheric control of attention in schizophrenia. Archives of General Psychiatry 45, 814821.CrossRefGoogle ScholarPubMed
Posner, MI, Petersen, SE (1990). The attention system of the human brain. Annual Review of Neuroscience 13, 2542.CrossRefGoogle ScholarPubMed
Posner, MI, Walker, JA, Friedrich, FJ, Rafal, RD (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience 4, 18631874.CrossRefGoogle ScholarPubMed
Robinson, LJ, Thompson, JM, Gallagher, P, Goswami, U, Young, AH, Ferrier, IN, Moore, PB (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders 93, 105115.CrossRefGoogle ScholarPubMed
Rushworth, MF, Hadland, KA, Paus, T, Sipila, PK (2002). Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. Journal of Neurophysiology 87, 25772592.CrossRefGoogle ScholarPubMed
Sitskoorn, MM, Aleman, A, Ebisch, SJ, Appels, MC, Kahn, RS (2004). Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophrenia Research 71, 285295.Google Scholar
Sklar, P, Smoller, JW, Fan, J, Ferreira, MA, Perlis, RH, Chambert, K, Nimgaonkar, VL, McQueen, MB, Faraone, SV, Kirby, A, de Bakker, PI, Ogdie, MN, Thase, ME, Sachs, GS, Todd-Brown, K, Gabriel, SB, Sougnez, C, Gates, C, Blumenstiel, B, Defelice, M, Ardlie, KG, Franklin, J, Muir, WJ, McGhee, KA, MacIntyre, DJ, McLean, A, VanBeck, M, McQuillin, A, Bass, NJ, Robinson, M, Lawrence, J, Anjorin, A, Curtis, D, Scolnick, EM, Daly, MJ, Blackwood, DH, Gurling, HM, Purcell, SM (2008). Whole-genome association study of bipolar disorder. Molecular Psychiatry 13, 558569.CrossRefGoogle ScholarPubMed
Snitz, BE, Macdonald, AW, Carter, CS (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin 32, 179194.Google Scholar
Splawski, I, Timothy, KW, Decher, N, Kumar, P, Sachse, FB, Beggs, AH, Sanguinetti, MC, Keating, MT (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences USA 102, 80898096.CrossRefGoogle ScholarPubMed
Splawski, I, Timothy, KW, Sharpe, LM, Decher, N, Kumar, P, Bloise, R, Napolitano, C, Schwartz, PJ, Joseph, RM, Condouris, K, Tager-Flusberg, H, Priori, SG, Sanguinetti, MC, Keating, MT (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 1931.CrossRefGoogle ScholarPubMed
Strakowski, SM, Adler, CM, Holland, SK, Mills, N, Delbello, MP (2004). A preliminary fMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology 29, 17341740.CrossRefGoogle ScholarPubMed
Striessnig, J, Koschak, A, Sinnegger-Brauns, MJ, Hetzenauer, A, Nguyen, NK, Busquet, P, Pelster, G, Singewald, N (2006). Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochemical Society Transactions 34, 903909.Google Scholar
Sturm, W, de Simone, A, Krause, BJ, Specht, K, Hesselmann, V, Radermacher, I, Herzog, H, Tellmann, L, Muller-Gartner, HW, Willmes, K (1999). Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37, 797805.Google Scholar
Sturm, W, Willmes, K (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage 14, 7684.Google Scholar
Thimm, M, Krug, A, Kellermann, T, Markov, V, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stöcker, T, Shah, NJ, Nöthen, MM, Rietschel, M, Kircher, T (2010 b). The effects of a DTNBP1 gene variant on attention networks: an fMRI study. Behavioral and Brain Functions 6, 54.Google Scholar
Thimm, M, Krug, A, Markov, V, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Nothen, MM, Rietschel, M, Kircher, T (2010 a). The impact of dystrobrevin-binding protein 1 (DTNBP1) on neural correlates of episodic memory encoding and retrieval. Human Brain Mapping 31, 203209.Google Scholar
Tiihonen, J, Haukka, J, Henriksson, M, Cannon, M, Kieseppa, T, Laaksonen, I, Sinivuo, J, Lonnqvist, J (2005). Premorbid intellectual functioning in bipolar disorder and schizophrenia: results from a cohort study of male conscripts. American Journal of Psychiatry 162, 19041910.CrossRefGoogle ScholarPubMed
Ullsperger, M, von Cramon, DY (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage 14, 13871401.CrossRefGoogle ScholarPubMed
van der Meere, J, Borger, N, van Os, T (2007). Sustained attention in major unipolar depression. Perceptual and Motor Skills 104, 13501354.Google Scholar
Veiel, HO (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Neuropsychology 19, 587603.CrossRefGoogle ScholarPubMed
Wagner, G, Sinsel, E, Sobanski, T, Kohler, S, Marinou, V, Mentzel, HJ, Sauer, H, Schlosser, RG (2006). Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biological Psychiatry 59, 958965.Google Scholar
Wang, K, Fan, J, Dong, Y, Wang, CQ, Lee, TM, Posner, MI (2005). Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophrenia Research 78, 235241.CrossRefGoogle ScholarPubMed
Wessa, M, Linke, J, Witt, SH, Nieratschker, V, Esslinger, C, Kirsch, P, Grimm, O, Hennerici, MG, Gass, A, King, AV, Rietschel, M (2010). The CACNA1C risk variant for bipolar disorder influences limbic activity. Molecular Psychiatry. Published online: 30 March 2010. doi:10.1038/mp.2009.103.Google Scholar
White, JA, McKinney, BC, John, MC, Powers, PA, Kamp, TJ, Murphy, GG (2008). Conditional forebrain deletion of the L-type calcium channel CaV1.2 disrupts remote spatial memories in mice. Learning and Memory 15, 15.Google Scholar
Wilkinson, D, Halligan, P (2004). The relevance of behavioural measures for functional-imaging studies of cognition. Nature Reviews Neuroscience 5, 6773.Google Scholar
Woodside, BL, Borroni, AM, Hammonds, MD, Teyler, TJ (2004). NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiology of Learning and Memory 81, 105114.Google Scholar
Zahn, TP, Rosenthal, D, Shakow, D (1963). Effects of irregular preparatory intervals on reaction time in schizophrenia. Journal of Abnormal and Social Psychology 67, 4452.CrossRefGoogle ScholarPubMed
Zakzanis, KK, Leach, L, Kaplan, E (1998). On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry, Neuropsychology, and Behavioral Neurology 11, 111119.Google Scholar
Zalla, T, Joyce, C, Szoke, A, Schurhoff, F, Pillon, B, Komano, O, Perez-Diaz, F, Bellivier, F, Alter, C, Dubois, B, Rouillon, F, Houde, O, Leboyer, M (2004). Executive dysfunctions as potential markers of familial vulnerability to bipolar disorder and schizophrenia. Psychiatry Research 121, 207217.CrossRefGoogle Scholar