Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:48:12.774Z Has data issue: false hasContentIssue false

The association of striatal volume and positive schizotypy in healthy subjects: intelligence as a moderating factor

Published online by Cambridge University Press:  18 September 2019

Tina Meller*
Affiliation:
Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
Ulrich Ettinger*
Affiliation:
Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
Phillip Grant
Affiliation:
Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
Igor Nenadić
Affiliation:
Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
*
Author for correspondence: Tina Meller, E-mail: tina.meller@uni-marburg.de and Ulrich Ettinger, E-mail: ulrich.ettinger@uni-bonn.de
Author for correspondence: Tina Meller, E-mail: tina.meller@uni-marburg.de and Ulrich Ettinger, E-mail: ulrich.ettinger@uni-bonn.de

Abstract

Background

Schizotypy, a putative schizophrenia endophenotype, has been associated with brain-structural variations partly overlapping with those in psychotic disorders. Variations in precuneus structure have been repeatedly reported, whereas the involvement of fronto-striatal networks – as in schizophrenia – is less clear. While shared genetic architecture is thought to increase vulnerability to environmental insults, beneficial factors like general intelligence might buffer their effect.

Methods

To further investigate the role of fronto-striatal networks in schizotypy, we examined the relationship of voxel- and surface-based brain morphometry and a measure of schizotypal traits (Schizotypal Personality Questionnaire, with subscores Cognitive-Perceptual, Interpersonal, Disorganised) in 115 healthy participants [54 female, mean age (s.d.) = 27.57(8.02)]. We tested intelligence (MWT-B) as a potential moderator.

Results

We found a positive association of SPQ Cognitive-Perceptual with putamen volume (p = 0.040, FWE peak level-corrected), moderated by intelligence: with increasing IQ, the correlation of SPQ Cognitive-Perceptual and striatal volume decreased (p = 0.022). SPQ Disorganised was positively correlated with precentral volume (p = 0.013, FWE peak level-corrected). In an exploratory analysis (p < 0.001, uncorrected), SPQ total score was positively associated with gyrification in the precuneus and postcentral gyrus, and SPQ Disorganised was negatively associated with gyrification in the inferior frontal gyrus.

Conclusions

Our findings support the role of fronto-striatal networks for schizotypal features in healthy individuals, and suggest that these are influenced by buffering factors like intelligence. We conclude that protective factors, like general cognitive capacity, might attenuate the psychosis risk associated with schizotypy. These results endorse the idea of a continuous nature of schizotypy, mirroring similar findings in schizophrenia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aichert, DS, Williams, SCR, Möller, H-J, Kumari, V and Ettinger, U (2012) Functional neural correlates of psychometric schizotypy: an fMRI study of antisaccades. Psychophysiology 49, 345356.CrossRefGoogle ScholarPubMed
Ashburner, J and Friston, KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55, 954967.CrossRefGoogle ScholarPubMed
Axelrod, SR, Grilo, CM, Sanislow, C and McGlashan, TH (2001) Schizotypal personality questionnaire-brief: factor structure and convergent validity in inpatient adolescents. Journal of Personality Disorders 15, 168179.CrossRefGoogle ScholarPubMed
Bakhshi, K and Chance, SA (2015) The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 303, 82102.CrossRefGoogle ScholarPubMed
Barrantes-Vidal, N, Grant, P and Kwapil, TR (2015) The role of schizotypy in the study of the etiology of schizophrenia spectrum disorders. Schizophrenia Bulletin 41(suppl 2), Oxford: Oxford University Press, S408S416.CrossRefGoogle Scholar
Barron, D, Voracek, M, Tran, US, Ong, HS, Morgan, KD, Towell, T and Swami, V (2018) A reassessment of the higher-order factor structure of the German schizotypal personality questionnaire (SPQ-G) in German-speaking adults. Psychiatry Research 269, 328336.CrossRefGoogle Scholar
Brod, JH (1997) Creativity and schizotypy. In Claridge, G (ed), Schizotypy – Implications for Illness and Health. Oxford: Oxford University Press, pp. 274298.CrossRefGoogle Scholar
Brosey, E and Woodward, ND (2015) Schizotypy and clinical symptoms, cognitive function, and quality of life in individuals with a psychotic disorder. Schizophrenia Research 166, 9297.CrossRefGoogle ScholarPubMed
Brugger, SP and Howes, OD (2017) Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 11041111.CrossRefGoogle ScholarPubMed
Caseras, X, Tansey, KE, Foley, S and Linden, D (2015) Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes. Translational Psychiatry 5, e692e692.CrossRefGoogle ScholarPubMed
Chang, M, Womer, FY, Bai, C, Zhou, Q, Wei, S, Jiang, X, Geng, H, Zhou, Y, Tang, Y and Wang, F (2016) Voxel-based morphometry in individuals at genetic high risk for schizophrenia and patients with schizophrenia during their first episode of psychosis. PLoS ONE 11, e0163749.CrossRefGoogle ScholarPubMed
Chemerinski, E, Byne, W, Kolaitis, JC, Glanton, CF, Canfield, EL, Newmark, RE, Haznedar, MM, Novakovic, V, Chu, K-W, Siever, LJ and Hazlett, EA (2013) Larger putamen size in antipsychotic-naïve individuals with schizotypal personality disorder. Schizophrenia Research 143, 158164.CrossRefGoogle ScholarPubMed
Chen, KC, Lee, IH, Yeh, TL, Chiu, NT, Chen, PS, Yang, YK, Lu, R-B and Chen, CC (2012) Schizotypy trait and striatal dopamine receptors in healthy volunteers. Psychiatry Research: Neuroimaging 201, 218221.CrossRefGoogle ScholarPubMed
Chi, JG, Dooling, EC and Gilles, FH (1977) Gyral development of the human brain. Annals of Neurology 1, 8693.CrossRefGoogle ScholarPubMed
Claridge, G (1997) Theoretical background and issues. In Claridge, G (ed), Schizotypy – Implications for Illness and Health. Oxford, NY: Oxford University Press, pp. 318.CrossRefGoogle Scholar
Colom, R, Burgaleta, M, Román, FJ, Karama, S, Álvarez-Linera, J, Abad, FJ, Martínez, K, Quiroga, and Haier, RJ (2013) Neuroanatomic overlap between intelligence and cognitive factors: morphometry methods provide support for the key role of the frontal lobes. NeuroImage 72, 143152.CrossRefGoogle ScholarPubMed
Compton, MT, Goulding, SM, Bakeman, R and McClure-Tone, EB (2009) An examination of the factorial structure of the Schizotypal Personality Questionnaire-Brief (SPQ-B) among undergraduate students. Schizophrenia Research 115, 286289.CrossRefGoogle ScholarPubMed
Cuesta, MJ, García de Jalón, E, Campos, MS, Moreno-Izco, L, Lorente-Omeñaca, R, Sánchez-Torres, AM and Peralta, V (2018) Motor abnormalities in first-episode psychosis patients and long-term psychosocial functioning. Schizophrenia Research 200, 97103.CrossRefGoogle ScholarPubMed
Dahnke, R, Yotter, RA and Gaser, C (2013) Cortical thickness and central surface estimation. NeuroImage 65, 336348.CrossRefGoogle ScholarPubMed
Dandash, O, Pantelis, C and Fornito, A (2017) Dopamine, fronto-striato-thalamic circuits and risk for psychosis. Schizophrenia Research 180, 4857.CrossRefGoogle ScholarPubMed
Debbané, M and Mohr, C (2015) Integration and development in schizotypy research: an introduction to the special supplement. Schizophrenia Bulletin 41(suppl. 2), S363S365.CrossRefGoogle Scholar
DeRosse, P, Nitzburg, GC, Ikuta, T, Peters, BD, Malhotra, AK and Szeszko, PR (2015) Evidence from structural and diffusion tensor imaging for frontotemporal deficits in psychometric schizotypy. Schizophrenia Bulletin 41, 104114.CrossRefGoogle ScholarPubMed
Di Martino, A, Scheres, A, Margulies, DS, Kelly, AMC, Uddin, LQ, Shehzad, Z, Biswal, B, Walters, JR, Castellanos, FX and Milham, MP (2008) Functional connectivity of human Striatum: a resting state fMRI study. Cerebral Cortex 18, 27352747.CrossRefGoogle ScholarPubMed
Ettinger, U, Joober, R, DE Guzman, R and O'Driscoll, GA (2006) Schizotypy, attention deficit hyperactivity disorder, and dopamine genes. Psychiatry and Clinical Neurosciences 60, 764767.CrossRefGoogle ScholarPubMed
Ettinger, U, Williams, SCR, Meisenzahl, EM, Möller, H-J, Kumari, V and Koutsouleris, N (2012) Association between brain structure and psychometric schizotypy in healthy individuals. The World Journal of Biological Psychiatry 13, 544549.CrossRefGoogle ScholarPubMed
Ettinger, U, Corr, PJ, Mofidi, A, Williams, SCR and Kumari, V (2013) Dopaminergic basis of the psychosis-prone personality investigated with functional magnetic resonance imaging of procedural learning. Frontiers in Human Neuroscience 7, 130.CrossRefGoogle ScholarPubMed
Ettinger, U, Meyhöfer, I, Steffens, M, Wagner, M and Koutsouleris, N (2014) Genetics, cognition, and neurobiology of schizotypal personality: a review of the overlap with schizophrenia. Frontiers in Psychiatry 5, 18.CrossRefGoogle ScholarPubMed
Ettinger, U, Mohr, C, Gooding, DC, Cohen, AS, Rapp, A, Haenschel, C and Park, S (2015) Cognition and brain function in schizotypy: a selective review. Schizophrenia Bulletin 41, S417S426.CrossRefGoogle ScholarPubMed
Eysenck, HJ (1952) The Scientific Study of Personality. Routledge & Kegan Paul Ltd.: London.Google Scholar
Falkenberg, I, Chaddock, C, Murray, RM, McDonald, C, Modinos, G, Bramon, E, Walshe, M, Broome, M, McGuire, P and Allen, P (2015) Failure to deactivate medial prefrontal cortex in people at high risk for psychosis. European Psychiatry 30, 633640.CrossRefGoogle ScholarPubMed
Flückiger, R, Ruhrmann, S, Debbané, M, Michel, C, Hubl, D, Schimmelmann, BG, Klosterkötter, J and Schultze-Lutter, F (2016) Psychosis-predictive value of self-reported schizotypy in a clinical high-risk sample. Journal of Abnormal Psychology 125, 923932.CrossRefGoogle Scholar
Flückiger, R, Michel, C, Grant, P, Ruhrmann, S, Vogeley, K, Hubl, D, Schimmelmann, BG, Klosterkötter, J, Schmidt, SJ and Schultze-Lutter, F (2019) The interrelationship between schizotypy, clinical high risk for psychosis and related symptoms: cognitive disturbances matter. Schizophrenia Research 210, 188196CrossRefGoogle ScholarPubMed
Fonseca-Pedrero, E, Ortuño-Sierra, J, Lucas-Molina, B, Debbané, M, Chan, RCK, Cicero, DC, Zhang, LC, Brenner, C, Barkus, E, Linscott, RJ, Kwapil, T, Barrantes-Vidal, N, Cohen, A, Raine, A, Compton, MT, Tone, EB, Suhr, J, Bobes, J, Fumero, A, Giakoumaki, S, Tsaousis, I, Preti, A, Chmielewski, M, Laloyaux, J, Mechri, A, Lahmar, MA, Wuthrich, V, Larøi, F, Badcock, JC, Jablensky, A, Barron, D, Swami, V, Tran, US and Voracek, M (2018) Brief assessment of schizotypal traits: a multinational study. Schizophrenia Research 197, 182191.CrossRefGoogle ScholarPubMed
Grace, AA, Floresco, SB, Goto, Y and Lodge, DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences 30, 220227.CrossRefGoogle ScholarPubMed
Grant, P (2015) Is schizotypy per se a suitable endophenotype of schizophrenia? – Do not forget to distinguish positive from negative facets. Frontiers in Psychiatry 6, 143.CrossRefGoogle Scholar
Grant, P, Balser, M, Munk, AJL, Linder, J and Hennig, J (2014a) A false-positive detection bias as a function of state and trait schizotypy in interaction with intelligence. Frontiers in Psychiatry 5, 135.CrossRefGoogle Scholar
Grant, P, Kuepper, Y, Mueller, EA, Wielpuetz, C, Mason, O and Hennig, J (2013) Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE) – a suitable endophenotype of schizophrenia. Frontiers in Human Neuroscience 7, 1.CrossRefGoogle ScholarPubMed
Grant, P, Gabriel, F, Kuepper, Y, Wielpuetz, C and Hennig, J (2014b) Psychosis-proneness correlates with expression levels of dopaminergic genes. European Psychiatry 29, 304306.CrossRefGoogle Scholar
Grant, P, Judith Leila Munk, A, Kuepper, Y, Wielpuetz, C and Hennig, J (2015) Additive genetic effects for schizotypy support a fully-dimensional model of psychosis-proneness. Journal of Individual Differences 36, 8792.CrossRefGoogle Scholar
Grant, P, Green, MJ and Mason, OJ (2018) Models of schizotypy: the importance of conceptual clarity. Schizophrenia Bulletin 44(suppl_2), S556S563.CrossRefGoogle ScholarPubMed
Gross, GM, Mellin, J, Silvia, PJ, Barrantes-Vidal, N and Kwapil, TR (2014) Comparing the factor structure of the Wisconsin schizotypy scales and the schizotypal personality questionnaire. Personality Disorders: Theory, Research, and Treatment 5, 397405.CrossRefGoogle ScholarPubMed
Gurvich, C, Bozaoglu, K, Neill, E, Van Rheenen, TE, Tan, EJ, Louise, S and Rossell, SL (2016) The dopamine D1 receptor gene is associated with negative schizotypy in a non-clinical sample. Psychiatry Research 235, 213214.CrossRefGoogle Scholar
Hatzimanolis, A, Avramopoulos, D, Arking, DE, Moes, A, Bhatnagar, P, Lencz, T, Malhotra, AK, Giakoumaki, SG, Roussos, P, Smyrnis, N, Bitsios, P and Stefanis, NC (2018) Stress-dependent association between polygenic risk for schizophrenia and schizotypal traits in young army recruits. Schizophrenia Bulletin 44, 338347.CrossRefGoogle ScholarPubMed
Hayes, A (2013) Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 2nd edn. New York, US: The Guilford Press.Google Scholar
Hirjak, D, Kubera, KM, Thomann, PA and Wolf, RC (2018) Motor dysfunction as an intermediate phenotype across schizophrenia and other psychotic disorders: progress and perspectives. Schizophrenia Research 200, 2634.CrossRefGoogle Scholar
Honea, R, Crow, TJ, Passingham, D and Mackay, CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry 162, 22332245.CrossRefGoogle ScholarPubMed
Hong, SB, Lee, TY, Kwak, YB, Kim, SN and Kwon, JS (2015) Baseline putamen volume as a predictor of positive symptom reduction in patients at clinical high risk for psychosis: a preliminary study. Schizophrenia Research 169, 178185.CrossRefGoogle ScholarPubMed
Howes, OD and Kapur, S (2009) The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophrenia Bulletin 35, 549562.CrossRefGoogle ScholarPubMed
Howes, OD, McCutcheon, R, Owen, MJ and Murray, RM (2017) The role of genes, stress, and dopamine in the development of schizophrenia. Biological Psychiatry 81, 920.CrossRefGoogle ScholarPubMed
Hubl, D, Schultze-Lutter, F, Hauf, M, Dierks, T, Federspiel, A, Kaess, M, Michel, C, Schimmelmann, BG and Kindler, J (2018) Striatal cerebral blood flow, executive functioning, and fronto-striatal functional connectivity in clinical high risk for psychosis. Schizophrenia Research 201, 231236.CrossRefGoogle ScholarPubMed
Janssens, M, Boyette, L-L, Heering, HD, Bartels-Velthuis, AA, Lataster, T, Kahn, RS, de Haan, L, van Os, J, Wiersma, D, Bruggeman, R, Cahn, W, Meijer, C and Myin-Germeys, I (2016) Developmental course of subclinical positive and negative psychotic symptoms and their associations with genetic risk status and impairment. Schizophrenia Research 174, 177182.CrossRefGoogle ScholarPubMed
Klein, C, Andresen, B and Jahn, T (1997) Erfassung der schizotypen persönlichkeit nach DSM-II-R: psychometrische eigenschaften einer autorisierten deutschsprachigen Übersetzung des ‘Schizotypal Personality Questionnaire’ (SPQ) von Raine. Diagnostica 43, 347369.Google Scholar
Klein, C, Andresen, B and Jahn, T (2001) Konstruktvalidierung der deutschsprachigen adaptation des Schizotypal Personality Questionnaires (SPQ) von Raine (1991). In Andresen, B and Maß, R (eds), Schizotypie. Psychometrische Entwicklungen und Biopsychologische Forschungsansätze. Göttingen: Hogrefe, pp. 349378.Google Scholar
Kline, E, Wilson, C, Ereshefsky, S, Nugent, KL, Pitts, S, Reeves, G and Schiffman, J (2012) Schizotypy, psychotic-like experiences and distress: an interaction model. Psychiatry Research 200, 647651.CrossRefGoogle Scholar
Knöchel, C, Stäblein, M, Prvulovic, D, Ghinea, D, Wenzler, S, Pantel, J, Alves, G, Linden, DEJ, Harrison, O, Carvalho, A, Reif, A and Oertel-Knöchel, V (2016) Shared and distinct gray matter abnormalities in schizophrenia, schizophrenia relatives and bipolar disorder in association with cognitive impairment. Schizophrenia Research 171, 140148.CrossRefGoogle ScholarPubMed
Koo, M-S, Dickey, CC, Park, H-J, Kubicki, M, Ji, NY, Bouix, S, Pohl, KM, Levitt, JJ, Nakamura, M, Shenton, ME and McCarley, RW (2006) Smaller neocortical gray matter and larger sulcal cerebrospinal fluid volumes in neuroleptic-naive women With schizotypal personality disorder. Archives of General Psychiatry 63, 1090.CrossRefGoogle ScholarPubMed
Kotov, R, Krueger, RF, Watson, D, Achenbach, TM, Althoff, RR, Bagby, RM, Brown, TA, Carpenter, WT, Caspi, A, Clark, LA, Eaton, NR, Forbes, MK, Forbush, KT, Goldberg, D, Hasin, D, Hyman, SE, Ivanova, MY, Lynam, DR, Markon, K, Miller, JD, Moffitt, TE, Morey, LC, Mullins-Sweatt, SN, Ormel, J, Patrick, CJ, Regier, DA, Rescorla, L, Ruggero, CJ, Samuel, DB, Sellbom, M, Simms, LJ, Skodol, AE, Slade, T, South, SC, Tackett, JL, Waldman, ID, Waszczuk, MA, Widiger, TA, Wright, AGC and Zimmerman, M (2017) The Hierarchical Taxonomy of Psychopathology (HiTOP): a dimensional alternative to traditional nosologies. Journal of Abnormal Psychology 126, 454477.CrossRefGoogle ScholarPubMed
Koutsouleris, N, Gaser, C, Jäger, M, Bottlender, R, Frodl, T, Holzinger, S, Schmitt, GJE, Zetzsche, T, Burgermeister, B, Scheuerecker, J, Born, C, Reiser, M, Möller, H-J and Meisenzahl, EM (2008) Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. NeuroImage 39, 16001612.CrossRefGoogle ScholarPubMed
Kühn, S, Schubert, F and Gallinat, J (2012) Higher prefrontal cortical thickness in high schizotypal personality trait. Journal of Psychiatric Research 46, 960965.CrossRefGoogle ScholarPubMed
Kwapil, TR and Barrantes-Vidal, N (2015) Schizotypy: looking back and moving forward. Schizophrenia Bulletin 41, S366S373.CrossRefGoogle ScholarPubMed
Kwapil, TR, Gross, GM, Silvia, PJ and Barrantes-Vidal, N (2013) Prediction of psychopathology and functional impairment by positive and negative schizotypy in the Chapmans’ ten-year longitudinal study. Journal of Abnormal Psychology 122, 807815.CrossRefGoogle ScholarPubMed
Leeson, VC, Barnes, TRE, Hutton, SB, Ron, MA and Joyce, EM (2009) IQ as a predictor of functional outcome in schizophrenia: a longitudinal, four-year study of first-episode psychosis. Schizophrenia Research 107, 5560.CrossRefGoogle ScholarPubMed
Lehrl, S (1995) Mehrfachwahl-Wortschatz-Intelligenztest MWT-B. Hogrefe: Göttingen.Google Scholar
Luders, E, Thompson, PM, Narr, KL, Toga, AW, Jancke, L and Gaser, C (2006) A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage 29, 12241230.CrossRefGoogle ScholarPubMed
Mamah, D, Harms, MP, Wang, L, Barch, D, Thompson, P, Kim, J, Miller, MI and Csernansky, JG (2008) Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biological Psychiatry 64, 111120.CrossRefGoogle ScholarPubMed
Meehl, PE (1962) Schizotaxia, schizotypy, schizophrenia. American Psychologist 17, 827838.CrossRefGoogle Scholar
Meehl, PE (1990) Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. Journal of Personality Disorders 4, 199.CrossRefGoogle Scholar
Metzler, S, Dvorsky, D, Wyss, C, Nordt, C, Walitza, S, Heekeren, K, Rössler, W and Theodoridou, A (2016) Neurocognition in help-seeking individuals at risk for psychosis: prediction of outcome after 24 months. Psychiatry Research 246, 188194.CrossRefGoogle ScholarPubMed
Meyhöfer, I, Steffens, M, Kasparbauer, A, Grant, P, Weber, B and Ettinger, U (2015) Neural mechanisms of smooth pursuit eye movements in schizotypy. Human Brain Mapping 36, 340353.CrossRefGoogle ScholarPubMed
Mittal, VA, Orr, JM, Turner, JA, Pelletier, AL, Dean, DJ, Lunsford-Avery, J and Gupta, T (2013) Striatal abnormalities and spontaneous dyskinesias in non-clinical psychosis. Schizophrenia Research 151, 141147.CrossRefGoogle ScholarPubMed
Modinos, G, Mechelli, A, Ormel, J, Groenewold, NA, Aleman, A and McGuire, PK (2010) Schizotypy and brain structure: a voxel-based morphometry study. Psychological Medicine 40, 14231431.CrossRefGoogle ScholarPubMed
Modinos, G, Egerton, A, McLaughlin, A, McMullen, K, Kumari, V, Lythgoe, DJ, Barker, GJ, Aleman, A and Williams, SCR (2018) Neuroanatomical changes in people with high schizotypy: relationship to glutamate levels. Psychological Medicine 48, 18801889.CrossRefGoogle ScholarPubMed
Mohr, C and Ettinger, U (2014) An overview of the association between schizotypy and dopamine. Frontiers in Psychiatry 5, 184.CrossRefGoogle ScholarPubMed
Nenadic, I, Sauer, H and Gaser, C (2010) Distinct pattern of brain structural deficits in subsyndromes of schizophrenia delineated by psychopathology. NeuroImage 49, 11531160.CrossRefGoogle ScholarPubMed
Nenadic, I, Yotter, RA, Sauer, H and Gaser, C (2014) Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Human Brain Mapping 35, 16911699.CrossRefGoogle ScholarPubMed
Nenadic, I, Dietzek, M, Schönfeld, N, Lorenz, C, Gussew, A, Reichenbach, JR, Sauer, H, Gaser, C and Smesny, S (2015a) Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study. Schizophrenia Research 161, 169176.CrossRefGoogle Scholar
Nenadic, I, Lorenz, C, Langbein, K, Dietzek, M, Smesny, S, Schönfeld, N, Fañanás, L, Sauer, H and Gaser, C (2015b) Brain structural correlates of schizotypy and psychosis proneness in a non-clinical healthy volunteer sample. Schizophrenia Research 168, 3743.CrossRefGoogle Scholar
Nenadic, I, Yotter, RA, Sauer, H and Gaser, C (2015c) Patterns of cortical thinning in different subgroups of schizophrenia. British Journal of Psychiatry 206, 479483.CrossRefGoogle Scholar
Oezgen, M and Grant, P (2018) Odd and disorganized – comparing the factor structure of the three major schizotypy inventories. Psychiatry Research 267, 289295.CrossRefGoogle ScholarPubMed
Okada, N, Fukunaga, M, Yamashita, F, Koshiyama, D, Yamamori, H, Ohi, K, Yasuda, Y, Fujimoto, M, Watanabe, Y, Yahata, N, Nemoto, K, Hibar, DP, van Erp, TGM, Fujino, H, Isobe, M, Isomura, S, Natsubori, T, Narita, H, Hashimoto, N, Miyata, J, Koike, S, Takahashi, T, Yamasue, H, Matsuo, K, Onitsuka, T, Iidaka, T, Kawasaki, Y, Yoshimura, R, Watanabe, Y, Suzuki, M, Turner, JA, Takeda, M, Thompson, PM, Ozaki, N, Kasai, K and Hashimoto, R (2016) Abnormal asymmetries in subcortical brain volume in schizophrenia. Molecular Psychiatry 21, 14601466.CrossRefGoogle Scholar
Peralta, V and Cuesta, MJ (2001) Motor features in psychotic disorders. I. Factor structure and clinical correlates. Schizophrenia Research 47, 107116.CrossRefGoogle ScholarPubMed
Peters, H, Riedl, V, Manoliu, A, Scherr, M, Schwerthöffer, D, Zimmer, C, Förstl, H, Bäuml, J, Sorg, C and Koch, K (2017) Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode. British Journal of Psychiatry 210, 7582.CrossRefGoogle Scholar
Postuma, RB and Dagher, A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex 16, 15081521.CrossRefGoogle ScholarPubMed
Rado, S (1953) Dynamics and classification of disordered behavior. The American Journal of Psychiatry 110, 406416.CrossRefGoogle ScholarPubMed
Raine, A (1991) The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin 17, 555564.CrossRefGoogle ScholarPubMed
Roché, MW, Fowler, ML and Lenzenweger, MF (2015) Deeper into schizotypy and motor performance: investigating the nature of motor control in a non-psychiatric sample. Psychiatry Research 228, 2025.CrossRefGoogle Scholar
Rössler, J, Unterassner, L, Wyss, T, Haker, H, Brugger, P, Rössler, W and Wotruba, D (2018) Schizotypal traits are linked to dopamine-induced striato-cortical decoupling: a randomized double-blind placebo-controlled study. Schizophrenia Bulletin 45, 680688.CrossRefGoogle Scholar
RStudio: Integrated Development for R. (2016) RStudio, Inc.: Boston, MA 1.1.456.Google Scholar
Satzger, W, Fessmann, H and Engel, RR (2002) Liefern HAWIE-R, WST und MWT-B Vergleichbare IQ-Werte?. Zeitschrift für Differentielle und Diagnostische Psychologie 23, 159170.Google Scholar
Siever, LJ and Davis, KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. American Journal of Psychiatry 161, 398413.CrossRefGoogle ScholarPubMed
Simpson, EH, Kellendonk, C and Kandel, E (2010) A possible role for the Striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65, 585596.CrossRefGoogle ScholarPubMed
Spalthoff, R, Gaser, C and Nenadić, I (2018) Altered gyrification in schizophrenia and its relation to other morphometric markers. Schizophrenia Research 202, 195202.CrossRefGoogle ScholarPubMed
Spinks, R, Nopoulos, P, Ward, J, Fuller, R, Magnotta, VA and Andreasen, NC (2005) Globus pallidus volume is related to symptom severity in neuroleptic naive patients with schizophrenia. Schizophrenia Research 73, 229233.CrossRefGoogle ScholarPubMed
Stanfield, AC, Moorhead, TWJ, Harris, JM, Owens, DGC, Lawrie, SM and Johnstone, EC (2008) Increased right prefrontal cortical folding in adolescents at risk of schizophrenia for cognitive reasons. Biological Psychiatry 63, 8085.CrossRefGoogle ScholarPubMed
Tarbox, SI and Pogue-Geile, MF (2011) A multivariate perspective on schizotypy and familial association with schizophrenia: a review. Clinical Psychology Review 31, 11691182.CrossRefGoogle ScholarPubMed
Tarbox, SI, Almasy, L, Gur, RE, Nimgaonkar, VL and Pogue-Geile, MF (2012) The nature of schizotypy among multigenerational multiplex schizophrenia families. Journal of Abnormal Psychology 121, 396406.CrossRefGoogle ScholarPubMed
van Erp, TGM, Hibar, DP, Rasmussen, JM, Glahn, DC, Pearlson, GD, Andreassen, OA, Agartz, I, Westlye, LT, Haukvik, UK, Dale, AM, Melle, I, Hartberg, CB, Gruber, O, Kraemer, B, Zilles, D, Donohoe, G, Kelly, S, McDonald, C, Morris, DW, Cannon, DM, Corvin, A, Machielsen, MWJ, Koenders, L, de Haan, L, Veltman, DJ, Satterthwaite, TD, Wolf, DH, Gur, RC, Gur, RE, Potkin, SG, Mathalon, DH, Mueller, BA, Preda, A, Macciardi, F, Ehrlich, S, Walton, E, Hass, J, Calhoun, VD, Bockholt, HJ, Sponheim, SR, Shoemaker, JM, van Haren, NEM, Hulshoff Pol, HE, Pol, HEH, Ophoff, RA, Kahn, RS, Roiz-Santiañez, R, Crespo-Facorro, B, Wang, L, Alpert, KI, Jönsson, EG, Dimitrova, R, Bois, C, Whalley, HC, McIntosh, AM, Lawrie, SM, Hashimoto, R, Thompson, PM and Turner, JA (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry 21, 547553.CrossRefGoogle ScholarPubMed
van Lutterveld, R, Diederen, KMJ, Otte, WM and Sommer, IE (2014) Network analysis of auditory hallucinations in nonpsychotic individuals. Human Brain Mapping 35, 14361445.CrossRefGoogle ScholarPubMed
Venables, PH and Raine, A (2015) The stability of schizotypy across time and instruments. Psychiatry Research 228, 585590.CrossRefGoogle ScholarPubMed
Vollema, MG and van den Bosch, RJ (1995) The multidimensionality of schizotypy. Schizophrenia Bulletin 21, 1931.CrossRefGoogle ScholarPubMed
Walter, EE, Fernandez, F, Snelling, M and Barkus, E (2016) Genetic consideration of schizotypal traits: a review. Frontiers in Psychology 7, 1769.CrossRefGoogle ScholarPubMed
Waltmann, M, O'Daly, O, Egerton, A, McMullen, K, Kumari, V, Barker, GJ, Williams, SCR and Modinos, G (2019) Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy. NeuroImage: Clinical 21, 101603.CrossRefGoogle ScholarPubMed
Wang, Y, Ettinger, U, Meindl, T and Chan, RCK (2018) Association of schizotypy with striatocortical functional connectivity and its asymmetry in healthy adults. Human Brain Mapping 39, 288299.CrossRefGoogle ScholarPubMed
White, TP, Wigton, R, Joyce, DW, Collier, T, Fornito, A and Shergill, SS (2016) Dysfunctional striatal systems in treatment-resistant schizophrenia. Neuropsychopharmacology 41, 12741285.CrossRefGoogle ScholarPubMed
Wickham, H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer Verlag: New York.CrossRefGoogle Scholar
Woodberry, KA, Seidman, LJ, Giuliano, AJ, Verdi, MB, Cook, WL and McFarlane, WR (2010) Neuropsychological profiles in individuals at clinical high risk for psychosis: relationship to psychosis and intelligence. Schizophrenia Research 123, 188198.CrossRefGoogle ScholarPubMed
Yan, C, Wang, Y, Su, L, Xu, T, Yin, D, Fan, M, Deng, C, Wang, Z, Lui, SSY, Cheung, EFC and Chan, RCK (2016) Differential mesolimbic and prefrontal alterations during reward anticipation and consummation in positive and negative schizotypy. Psychiatry Research: Neuroimaging 254, 127136.CrossRefGoogle ScholarPubMed
Ziermans, T, de Wit, S, Schothorst, P, Sprong, M, van Engeland, H, Kahn, R and Durston, S (2014) Neurocognitive and clinical predictors of long-term outcome in adolescents at ultra-high risk for psychosis: a 6-year follow-up. PLoS ONE 9, e93994.CrossRefGoogle ScholarPubMed
Zuliani, R, Delvecchio, G, Bonivento, C, Cattarinussi, G, Perlini, C, Bellani, M, Marinelli, V, Rossetti, MG, Lasalvia, A, McIntosh, A, Lawrie, SM, Balestrieri, M, Ruggeri, M, Brambilla, P and PICOS Veneto Group (2018) Increased gyrification in schizophrenia and non affective first episode of psychosis. Schizophrenia Research 193, 269275.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Meller et al. supplementary material

Figures SF1-SF2

Download Meller et al. supplementary material(PDF)
PDF 320.6 KB