Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T13:38:57.284Z Has data issue: false hasContentIssue false

Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial

Published online by Cambridge University Press:  21 July 2021

Alec J. Jamieson*
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
Ben J. Harrison
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
Christopher G. Davey*
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia Department of Psychiatry, The University of Melbourne, Australia
*
Author for correspondence: Alec J. Jamieson, E-mail: alecj@student.unimelb.edu.au; Christopher G. Davey, E-mail: c.davey@unimelb.edu.au
Author for correspondence: Alec J. Jamieson, E-mail: alecj@student.unimelb.edu.au; Christopher G. Davey, E-mail: c.davey@unimelb.edu.au

Abstract

Background

Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response.

Methods

Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders.

Results

Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing.

Conclusions

Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The online version of this article has been updated since original publication. A notice detailing the changes has also been published at https://doi.org/10.1017/S0033291721003342

References

Almeida, J. R., Versace, A., Mechelli, A., Hassel, S., Quevedo, K., Kupfer, D. J., & Phillips, M. L. (2009). Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biological Psychiatry, 66(5), 451459. doi: 10.1016/j.biopsych.2009.03.024CrossRefGoogle ScholarPubMed
Arnone, D. (2019). Functional MRI findings, pharmacological treatment in major depression and clinical response. Progress in Neuropsychopharmacology and Biological Psychiatry, 91, 2837. doi: 10.1016/j.pnpbp.2018.08.004CrossRefGoogle ScholarPubMed
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8), 969977. doi: 10.1176/appi.ajp.2008.08050721CrossRefGoogle ScholarPubMed
Beck, J. S., Beck, J. S., & Beck, A. T. (2011). Cognitive behavior therapy: Basics and beyond (2nd ed.). New York; NY: Guilford Press.Google Scholar
Beesdo, K., Lau, J. Y., Guyer, A. E., McClure-Tone, E. B., Monk, C. S., Nelson, E. E., … Pine, D. S. (2009). Common and distinct amygdala-function perturbations in depressed vs anxious adolescents. Archives of General Psychiatry, 66(3), 275285. doi: 10.1001/archgenpsychiatry.2008.545CrossRefGoogle ScholarPubMed
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277. doi: 10.1038/nrn2353CrossRefGoogle ScholarPubMed
Bower, G. H. (1981). Mood and memory. American Psychologist Journal, 36(2), 129148. doi: 10.1037//0003-066x.36.2.129CrossRefGoogle ScholarPubMed
Braunstein, L. M., Gross, J. J., & Ochsner, K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive and Affective Neuroscience, 12(10), 15451557. doi: 10.1093/scan/nsx096CrossRefGoogle ScholarPubMed
Carballedo, A., Scheuerecker, J., Meisenzahl, E., Schoepf, V., Bokde, A., Moller, H. J., … Frodl, T. (2011). Functional connectivity of emotional processing in depression. Journal of Affective Disorders, 134(1-3), 272279. doi: 10.1016/j.jad.2011.06.021CrossRefGoogle ScholarPubMed
Costafreda, S. G., Khanna, A., Mourao-Miranda, J., & Fu, C. H. (2009). Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport, 20(7), 637641. doi: 10.1097/WNR.0b013e3283294159CrossRefGoogle ScholarPubMed
Dannlowski, U., Ohrmann, P., Konrad, C., Domschke, K., Bauer, J., Kugel, H., … Suslow, T. (2009). Reduced amygdala-prefrontal coupling in major depression: Association with MAOA genotype and illness severity. International Journal of Neuropsychopharmacology, 12(1), 1122. doi: 10.1017/S1461145708008973CrossRefGoogle ScholarPubMed
Davey, C. G., Chanen, A. M., Hetrick, S. E., Cotton, S. M., Ratheesh, A., Amminger, G. P., … Berk, M. (2019). The addition of fluoxetine to cognitive behavioural therapy for youth depression (YoDA-C): A randomised, double-blind, placebo-controlled, multicentre clinical trial. The Lancet. Psychiatry, 6(9), 735744. doi: 10.1016/S2215-0366(19)30215-9CrossRefGoogle ScholarPubMed
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry, 51(1), 6880. doi: 10.1016/s0006-3223(01)01328-2CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9(10), 788796. doi: 10.1038/nrn2345CrossRefGoogle ScholarPubMed
Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M. K., Bagnis, A., … Costa, T. (2017). Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Scientific Reports, 7, 45260. doi: 10.1038/srep45260CrossRefGoogle ScholarPubMed
Dichter, G. S., Felder, J. N., & Smoski, M. J. (2009). Affective context interferes with cognitive control in unipolar depression: An fMRI investigation. Journal of Affective Disorders, 114(1–3), 131142. doi: 10.1016/j.jad.2008.06.027CrossRefGoogle Scholar
Dichter, G. S., Gibbs, D., & Smoski, M. J. (2015). A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. Journal of Affective Disorders, 172, 817. doi: 10.1016/j.jad.2014.09.028CrossRefGoogle ScholarPubMed
Dima, D., Stephan, K. E., Roiser, J. P., Friston, K. J., & Frangou, S. (2011). Effective connectivity during processing of facial affect: Evidence for multiple parallel pathways. Journal of Neuroscience, 31(40), 1437814385. doi: 10.1523/JNEUROSCI.2400-11.2011CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467477. doi: 10.1038/nrn3027CrossRefGoogle ScholarPubMed
Dunlop, B. W., & Mayberg, H. S. (2014). Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues Clinical Neuroscience, 16(4), 479490. doi: 10.31887/DCNS.2014.16.4/bdunlopGoogle ScholarPubMed
Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693700. doi: 10.1038/nrn4044CrossRefGoogle ScholarPubMed
Etkin, A., & Schatzberg, A. F. (2011). Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. American Journal of Psychiatry, 168(9), 968978. doi: 10.1176/appi.ajp.2011.10091290CrossRefGoogle ScholarPubMed
Fales, C. L., Barch, D. M., Rundle, M. M., Mintun, M. A., Snyder, A. Z., Cohen, J. D., … Sheline, Y. I. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry, 63(4), 377384. doi: 10.1016/j.biopsych.2007.06.012CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997). Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). Washington, D.C.: American Psychiatric Publishing.Google Scholar
Fitzgerald, J. M., Kinney, K. L., Phan, K. L., & Klumpp, H. (2018). Distinct neural engagement during implicit and explicit regulation of negative stimuli. Neuropsychologia, 145, 106675. doi: 10.1016/j.neuropsychologia.2018.02.002Google ScholarPubMed
Foland-Ross, L. C., & Gotlib, I. H. (2012). Cognitive and neural aspects of information processing in major depressive disorder: An integrative perspective. Frontiers in Psychology, 3, 489. doi: 10.3389/fpsyg.2012.00489CrossRefGoogle Scholar
Fonseka, T. M., MacQueen, G. M., & Kennedy, S. H. (2018). Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. Journal of Affective Disorders, 233, 2135. doi: 10.1016/j.jad.2017.10.049CrossRefGoogle ScholarPubMed
Frank, D. W., & Sabatinelli, D. (2012). Stimulus-driven reorienting in the ventral frontoparietal attention network: The role of emotional content. Frontiers in Human Neuroscience, 6, 116. doi: 10.3389/fnhum.2012.00116CrossRefGoogle ScholarPubMed
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 1336. doi: 10.1089/brain.2011.0008CrossRefGoogle ScholarPubMed
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 12731302. doi: 10.1016/s1053-8119(03)00202-7.CrossRefGoogle ScholarPubMed
Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C. M., … Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413431. doi: 10.1016/j.neuroimage.2015.11.015CrossRefGoogle Scholar
Friston, K. J., & Penny, W. (2011). Post hoc Bayesian model selection. Neuroimage, 56(4), 20892099. doi: 10.1016/j.neuroimage.2011.03.062CrossRefGoogle ScholarPubMed
Friston, K. J., Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., & Zeidman, P. (2019). Dynamic causal modelling revisited. Neuroimage, 199, 730744. doi: 10.1016/j.neuroimage.2017.02.045CrossRefGoogle ScholarPubMed
Fu, C. H., Williams, S. C., Cleare, A. J., Scott, J., Mitterschiffthaler, M. T., Walsh, N. D., … Murray, R. M. (2008). Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biological Psychiatry, 64(6), 505512. doi: 10.1016/j.biopsych.2008.04.033CrossRefGoogle ScholarPubMed
Godlewska, B. R., & Harmer, C. J. (2021). Cognitive neuropsychological theory of antidepressant action: A modern-day approach to depression and its treatment. Psychopharmacology, 238(5), 12651278. doi: 10.1007/s00213-019-05448-0CrossRefGoogle ScholarPubMed
Gold, A. L., Morey, R. A., & McCarthy, G. (2015). Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biological Psychiatry, 77(4), 394403. doi: 10.1016/j.biopsych.2014.03.030CrossRefGoogle ScholarPubMed
Gore, F. M., Bloem, P. J., Patton, G. C., Ferguson, J., Joseph, V., Coffey, C., … Mathers, C. D. (2011). Global burden of disease in young people aged 10-24 years: A systematic analysis. Lancet (London, England), 377(9783), 20932102. doi: 10.1016/S0140-6736(11)60512-6CrossRefGoogle ScholarPubMed
Goulden, N., McKie, S., Thomas, E. J., Downey, D., Juhasz, G., Williams, S. R., … Elliott, R. (2012). Reversed frontotemporal connectivity during emotional face processing in remitted depression. Biological Psychiatry, 72(7), 604611. doi: 10.1016/j.biopsych.2012.04.031CrossRefGoogle ScholarPubMed
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169(7), 693703. doi: 10.1176/appi.ajp.2012.11071105CrossRefGoogle ScholarPubMed
Hankin, B. L., Gibb, B. E., Abela, J. R. Z., & Flory, K. (2010). Selective attention to affective stimuli and clinical depression among youths: Role of anxiety and specificity of emotion. Journal of Abnormal Psychology, 119(3), 491501. doi: 10.1037/a0019609CrossRefGoogle ScholarPubMed
Harmer, C. J., O'Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., … Cowen, P. J. (2009). Effect of acute antidepressant administration on negative affective bias in depressed patients. American Journal of Psychiatry, 166(10), 11781184. doi: 10.1176/appi.ajp.2009.09020149CrossRefGoogle ScholarPubMed
Harrison, L. A., Kats, A., Williams, M. E., & Aziz-Zadeh, L. (2019). The importance of sensory processing in mental health: A proposed addition to the Research Domain Criteria (RDoC) and suggestions for RDoC 2.0. Frontiers in Psychology, 10, 103. doi: 10.3389/fpsyg.2019.00103CrossRefGoogle Scholar
Helm, K., Viol, K., Weiger, T. M., Tass, P. A., Grefkes, C., Del Monte, D., & Schiepek, G. (2018). Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatric Disease and Treatment, 14, 27152737. doi: 10.2147/NDT.S170989CrossRefGoogle ScholarPubMed
Herrington, J. D., Taylor, J. M., Grupe, D. W., Curby, K. M., & Schultz, R. T. (2011). Bidirectional communication between amygdala and fusiform gyrus during facial recognition. Neuroimage, 56(4), 23482355. doi: 10.1016/j.neuroimage.2011.03.072CrossRefGoogle ScholarPubMed
Jacob, H., Bruck, C., Domin, M., Lotze, M., & Wildgruber, D. (2014). I can't keep your face and voice out of my head: Neural correlates of an attentional bias toward nonverbal emotional cues. Cerebral Cortex, 24(6), 14601473. doi: 10.1093/cercor/bhs417CrossRefGoogle ScholarPubMed
Jamieson, A. J., Davey, C. G., & Harrison, B. J. (2021). Differential modulation of effective connectivity in the brain's extended face processing system by fearful and sad facial expressions. eNeuro, 8(2). doi: 10.1523/ENEURO.0380-20.2021CrossRefGoogle ScholarPubMed
Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27(33), 88778884. doi: 10.1523/JNEUROSCI.2063-07.2007CrossRefGoogle ScholarPubMed
Kessler, R. C. (2012). The costs of depression. Psychiatric Clinics of North America, 35(1), 114. doi: 10.1016/j.psc.2011.11.005CrossRefGoogle ScholarPubMed
Kong, L. T., Chen, K. Y., Tang, Y. Q., Wu, F., Driesen, N., Womer, F., … Wang, F. (2013). Functional connectivity between the amygdala and prefrontal cortex in medication-naive individuals with major depressive disorder. Journal of Psychiatry & Neuroscience, 38(6), 417422. doi: 10.1503/jpn.120117CrossRefGoogle ScholarPubMed
Leppanen, J. M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1), 3439. doi: 10.1097/01.yco.0000191500.46411.00CrossRefGoogle ScholarPubMed
Li, B. J., Friston, K., Mody, M., Wang, H. N., Lu, H. B., & Hu, D. W. (2018). A brain network model for depression: From symptom understanding to disease intervention. CNS Neuroscience & Therapeutics, 24(11), 10041019. doi: 10.1111/cns.12998CrossRefGoogle ScholarPubMed
Liu, B., Liu, J., Wang, M., Zhang, Y., & Li, L. (2017). From serotonin to neuroplasticity: Evolvement of theories for major depressive disorder. Frontiers in Cellular Neuroscience, 11, 305. doi: 10.3389/fncel.2017.00305CrossRefGoogle ScholarPubMed
Lu, Q., Li, H. R., Luo, G. P., Wang, Y., Tang, H., Han, L., & Yao, Z. J. (2012). Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: A dynamic causal modeling study on MEG. Neuroscience Letters, 523(2), 125130. doi: 10.1016/j.neulet.2012.06.058CrossRefGoogle Scholar
MacNamara, A., Klumpp, H., Kennedy, A. E., Langenecker, S. A., & Phan, K. L. (2017). Transdiagnostic neural correlates of affective face processing in anxiety and depression. Depression and Anxiety, 34(7), 621631. doi: 10.1002/da.22631CrossRefGoogle ScholarPubMed
McDermott, T. J., Kirlic, N., Akeman, E., Touthang, J., Cosgrove, K. T., DeVille, D. C., … Aupperle, R. L. (2020). Visual cortical regions show sufficient test-retest reliability while salience regions are unreliable during emotional face processing. Neuroimage, 220, 117077. doi: 10.1016/j.neuroimage.2020.117077CrossRefGoogle ScholarPubMed
Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382389. doi: 10.1192/bjp.134.4.382CrossRefGoogle ScholarPubMed
Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., … Memish, Z. A. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet (London, England), 380(9859), 21972223. doi: 10.1016/S0140-6736(12)61689-4CrossRefGoogle ScholarPubMed
Nord, C. L., Gray, A., Charpentier, C. J., Robinson, O. J., & Roiser, J. P. (2017). Unreliability of putative fMRI biomarkers during emotional face processing. Neuroimage, 156, 119127. doi: 10.1016/j.neuroimage.2017.05.024CrossRefGoogle ScholarPubMed
Nord, C. L., Gray, A., Robinson, O. J., & Roiser, J. P. (2019). Reliability of fronto-amygdala coupling during emotional face processing. Brain Science, 9(4), 89. doi: 10.3390/brainsci9040089CrossRefGoogle ScholarPubMed
Pathak, Y., Salami, O., Baillet, S., Li, Z., & Butson, C. R. (2016). Longitudinal changes in depressive circuitry in response to neuromodulation therapy. Frontiers in Neural Circuits, 10, 50. doi: 10.3389/fncir.2016.00050CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504514. doi: 10.1016/s0006-3223(03)00168-9CrossRefGoogle ScholarPubMed
Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience & Biobehavioral Reviews, 36(1), 479501. doi: 10.1016/j.neubiorev.2011.08.005CrossRefGoogle ScholarPubMed
Rayner, G., Jackson, G., & Wilson, S. (2016). Cognition-related brain networks underpin the symptoms of unipolar depression: Evidence from a systematic review. Neuroscience Biobehavioral Reviews, 61, 5365. doi: 10.1016/j.neubiorev.2015.09.022CrossRefGoogle ScholarPubMed
Riedel, M., Moller, H. J., Obermeier, M., Schennach-Wolff, R., Bauer, M., Adli, M., … Seemuller, F. (2010). Response and remission criteria in major depression − a validation of current practice. Journal of Psychiatric Research, 44(15), 10631068. doi: 10.1016/j.jpsychires.2010.03.006CrossRefGoogle ScholarPubMed
Ritchey, M., Dolcos, F., Eddington, K. M., Strauman, T. J., & Cabeza, R. (2011). Neural correlates of emotional processing in depression: Changes with cognitive behavioral therapy and predictors of treatment response. Journal of Psychiatric Research, 45(5), 577587. doi: 10.1016/j.jpsychires.2010.09.007CrossRefGoogle ScholarPubMed
Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhe, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(10 Pt 2), 25292553. doi: 10.1016/j.neubiorev.2013.07.018CrossRefGoogle ScholarPubMed
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37(1), 117136. doi: 10.1038/npp.2011.183CrossRefGoogle ScholarPubMed
Rosa, M. J., Friston, K. J., & Penny, W. (2012). Post-hoc selection of dynamic causal models. Journal of Neuroscience Methods, 208(1), 6678. doi: 10.1016/j.jneumeth.2012.04.013CrossRefGoogle ScholarPubMed
Ruhe, H. G., Booij, J., Veltman, D. J., Michel, M. C., & Schene, A. H. (2012). Successful pharmacologic treatment of major depressive disorder attenuates amygdala activation to negative facial expressions: A functional magnetic resonance imaging study. Journal of Clinical Psychiatry, 73(4), 451459. doi: 10.4088/JCP.10m06584CrossRefGoogle ScholarPubMed
Rui de Moraes, J., Bruno Marinho, D. S., & Sérgio, F. (2014). Hemispheric specialization in face recognition: From spatial frequencies to holistic/analytic cognitive processing. Psychology & Neuroscience, 7(4), 503. doi: 10.3922/j.psns.2014.4.09Google Scholar
Serafini, G., Canepa, G., Adavastro, G., Nebbia, J., Murri, M. B., Erbuto, D., … Amore, M. (2017a). The relationship between childhood maltreatment and non-suicidal self-injury: A systematic review. Frontiers in Psychiatry, 8, 149. doi: 10.3389/fpsyt.2017.00149CrossRefGoogle Scholar
Serafini, G., Gonda, X., Canepa, G., Pompili, M., Rihmer, Z., Amore, M., & Engel-Yeger, B. (2017b). Extreme sensory processing patterns show a complex association with depression, and impulsivity, alexithymia, and hopelessness. Journal of Affective Disorders, 210, 249. doi: 10.1016/j.jad.2016.12.019CrossRefGoogle Scholar
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2), 198209. doi: 10.1016/j.biopsych.2006.05.048CrossRefGoogle ScholarPubMed
Sorger, B., Goebel, R., Schiltz, C., & Rossion, B. (2007). Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage, 35(2), 836852. doi: 10.1016/j.neuroimage.2006.09.051CrossRefGoogle ScholarPubMed
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49(4), 30993109. doi: 10.1016/j.neuroimage.2009.11.015CrossRefGoogle ScholarPubMed
Straub, J., Metzger, C. D., Plener, P. L., Koelch, M. G., Groen, G., & Abler, B. (2017). Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. Journal of Affective Disorders, 209, 135139. doi: 10.1016/j.jad.2016.11.024CrossRefGoogle ScholarPubMed
Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biology of Mood & Anxiety Disorders, 1(1), 10. doi: 10.1186/2045-5380-1-10CrossRefGoogle ScholarPubMed
Tang, S., Lu, L., Zhang, L., Hu, X., Bu, X., Li, H., … Huang, X. (2018). Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. EBioMedicine, 36, 436445. doi: 10.1016/j.ebiom.2018.09.010CrossRefGoogle ScholarPubMed
Thapar, A., Collishaw, S., Pine, D. S., & Thapar, A. K. (2012). Depression in adolescence. Lancet (London, England), 379(9820), 10561067. doi: 10.1016/S0140-6736(11)60871-4CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., … Casey, B. J. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives General Psychiatry, 58(11), 10571063. doi: 10.1001/archpsyc.58.11.1057CrossRefGoogle ScholarPubMed
Vai, B., Bulgarelli, C., Godlewska, B. R., Cowen, P. J., Benedetti, F., & Harmer, C. J. (2016). Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration. European Neuropsychopharmacology, 26(12), 20002010. doi: 10.1016/j.euroneuro.2016.09.640CrossRefGoogle ScholarPubMed
van den Bulk, B. G., Meens, P. H., van Lang, N. D., de Voogd, E. L., van der Wee, N. J., Rombouts, S. A., … Vermeiren, R. R. (2014). Amygdala activation during emotional face processing in adolescents with affective disorders: The role of underlying depression and anxiety symptoms. Frontiers in Human Neuroscience, 8, 393. doi: 10.3389/fnhum.2014.00393CrossRefGoogle ScholarPubMed
Van Vleet, T., Stark-Inbar, A., Merzenich, M. M., Jordan, J. T., Wallace, D. L., Lee, M. B., … Nahum, M. (2019). Biases in processing of mood-congruent facial expressions in depression. Psychiatry Research, 275, 143148. doi: 10.1016/j.psychres.2019.02.076CrossRefGoogle ScholarPubMed
Victor, T. A., Furey, M. L., Fromm, S. J., Ohman, A., & Drevets, W. C. (2010). Relationship between amygdala responses to masked faces and mood state and treatment in Major depressive disorder. Archives of General Psychiatry, 67(11), 11281138. doi: 10.1001/archgenpsychiatry.2010.144CrossRefGoogle ScholarPubMed
Wechsler, D. (2001). Manual for the Wechsler test of adult reading (WTAR). San Antonio, TX: Psychological Corporation.Google Scholar
Williams, L. M., Korgaonkar, M. S., Song, Y. C., Paton, R., Eagles, S., Goldstein-Piekarski, A., … Etkin, A. (2015). Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology, 40(10), 23982408. doi: 10.1038/npp.2015.89CrossRefGoogle ScholarPubMed
Willinger, D., Karipidis, I. I., Beltrani, S., Di Pietro, S. V., Sladky, R., Walitza, S., … Brem, S. (2019). Valence-dependent coupling of prefrontal-amygdala effective connectivity during facial affect processing. eNeuro, 6(4). doi: 10.1523/ENEURO.0079-19.2019CrossRefGoogle ScholarPubMed
World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. Rep. CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization.Google Scholar
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910. doi: 10.1371/journal.pone.0068910CrossRefGoogle ScholarPubMed
Zeidman, P., Jafarian, A., Corbin, N., Seghier, M. L., Razi, A., Price, C. J., & Friston, K. J. (2019a). A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. Neuroimage, 200, 174190. doi: 10.1016/j.neuroimage.2019.06.031CrossRefGoogle Scholar
Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J. (2019b). A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. Neuroimage, 200, 1225. doi: 10.1016/j.neuroimage.2019.06.032CrossRefGoogle Scholar
Zhong, M., Wang, X., Xiao, J., Yi, J., Zhu, X., Liao, J., … Yao, S. (2011). Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biological Psychology, 88(2-3), 233242. doi: 10.1016/j.biopsycho.2011.08.007CrossRefGoogle ScholarPubMed
Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PLoS One, 8(11), e79184. doi: 10.1371/journal.pone.0079184CrossRefGoogle ScholarPubMed
Supplementary material: File

Jamieson et al. supplementary material

Jamieson et al. supplementary material

Download Jamieson et al. supplementary material(File)
File 2 MB