Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9sqjz Total loading time: 0.372 Render date: 2021-05-08T05:46:45.166Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

White-matter tract integrity in late-life depression: associations with severity and cognition

Published online by Cambridge University Press:  16 September 2013

R. A. Charlton
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
M. Lamar
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
A. Zhang
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
S. Yang
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
O. Ajilore
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
A. Kumar
Affiliation:
Department of Psychiatry, University of Illinois at Chicago, IL, USA
Corresponding
E-mail address:

Abstract

Background

Although significant changes in both gray and white matter have been noted in late-life depression (LLD), the pathophysiology of implicated white-matter tracts has not been fully described. In this study we examined the integrity of specific white-matter tracts in LLD versus healthy controls (HC).

Method

Participants aged ⩾60 years were recruited from the community. The sample included 23 clinically diagnosed individuals with LLD and 23 HC. White-matter integrity metrics [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)] were calculated in the bilateral cingulum and uncinate fasciculus. Depression severity was measured using the Center for Epidemiological Studies Depression Scale (CESD). Composite scores for learning and memory and executive function were created using standardized neuropsychological assessments.

Results

White-matter integrity was lower in LLD versus HC in the bilateral cingulum and right uncinate fasciculus (p⩽0.05). In the whole sample, depression severity correlated with integrity in the bilateral cingulum and right uncinate fasciculus (p ⩽0.05). In patients, depression severity correlated with the integrity of the left uncinate fasciculus (p = 0.03); this tract also correlated with executive function (p = 0.02). Among HC, tract integrity did not correlate with depression scores; however, learning and memory correlated with integrity of the bilateral uncinate fasciculus and bilateral cingulum; executive function correlated with the right uncinate and left cingulum (p ⩽0.05).

Conclusions

White-matter tract integrity was lower in LLD than in HC and was associated with depression severity across all participants. Tract integrity was associated with cognition in both groups but more robustly among HC.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aizenstein, HJ, Andreescu, C, Edelman, KL, Cochran, J, Price, J, Butters, MA, Karp, J, Patel, M, Reynolds, CF 3rd (2011). fMRI correlates of white matter hyperintensities in late-life depression. American Journal of Psychiatry 168, 10751082.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Buckwalter, K, Olin, J, Martinez, R, Wainscott, C, Krishnan, KR (2002 b). Comorbidity of late life depression: an opportunity for research on mechanisms and treatment. Biological Psychiatry 52, 543558.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Kiosses, DN, Choi, SJ, Murphy, CF, Lim, KO (2002 a). Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. American Journal of Psychiatry 159, 19291932.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Meyers, BS, Young, RC, Campbell, S, Silbersweig, D, Charlson, M (1997 a). ‘Vascular depression’ hypothesis. Archives of General Psychiatry 54, 915922.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Meyers, BS, Young, RC, Kakuma, T, Silbersweig, D, Charlson, M (1997 b). Clinically defined vascular depression. American Journal of Psychiatry 154, 562565.Google ScholarPubMed
Alexopoulos, GS, Murphy, CF, Gunning-Dixon, FM, Latoussakis, V, Kanellopoulos, D, Klimstra, S, Lim, KO, Hoptman, MJ (2008). Microstructural white matter abnormalities and remission of geriatric depression. American Journal of Psychiatry 165, 238244.CrossRefGoogle ScholarPubMed
Army Individual Test Battery (1944). The Trail Making Test: Manual of Directions and Scoring. War Department, Adjutant General's Office: Washingon, DC.Google Scholar
Bae, JN, MacFall, JR, Krishnan, KR, Payne, ME, Steffens, DC, Taylor, WD (2006). Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biological Psychiatry 60, 13561363.CrossRefGoogle ScholarPubMed
Ballmaier, M, Narr, KL, Toga, AW, Elderkin-Thompson, V, Thompson, PM, Hamilton, L, Haroon, E, Pham, D, Heinz, A, Kumar, A (2008). Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. American Journal of Psychiatry 165, 229237.CrossRefGoogle ScholarPubMed
Ballmaier, M, Toga, AW, Blanton, RE, Sowell, ER, Lavretsky, H, Peterson, J, Pham, D, Kumar, A (2004). Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. American Journal of Psychiatry 161, 99108.CrossRefGoogle ScholarPubMed
Barch, DM, D'Angelo, G, Pieper, C, Wilkins, CH, Welsh-Bohmer, K, Taylor, W, Garcia, KS, Gersing, K, Doraiswamy, PM, Sheline, YI (2012). Cognitive improvement following treatment in late-life depression: relationship to vascular risk and age of onset. American Journal of Geriatric Psychiatry 20, 682690.CrossRefGoogle ScholarPubMed
Bremner, JD, Narayan, M, Anderson, ER, Staib, LH, Miller, HL, Charney, DS (2000). Hippocampal volume reduction in major depression. American Journal of Psychiatry 157, 115118.CrossRefGoogle ScholarPubMed
Bremner, JD, Vythilingam, M, Vermetten, E, Vaccarino, V, Charney, DS (2004). Deficits in hippocampal and anterior cingulate functioning during verbal declarative memory encoding in midlife major depression. American Journal of Psychiatry 161, 637645.CrossRefGoogle ScholarPubMed
Budde, MD, Kim, JH, Liang, HF, Russell, JH, Cross, AH, Song, SK (2008). Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR in Biomedicine 21, 589597.CrossRefGoogle Scholar
Budde, MD, Xie, M, Cross, AH, Song, SK (2009). Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. Journal of Neuroscience 29, 28052813.CrossRefGoogle ScholarPubMed
Catani, M, Thiebaut de Schotten, M (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44, 11051132.CrossRefGoogle ScholarPubMed
Charlton, RA, Barrick, TR, Markus, HS, Morris, RG (2010 a). The relationship between episodic long-term memory and white matter integrity in normal aging. Neuropsychologia 48, 114122.CrossRefGoogle ScholarPubMed
Charlton, RA, Schiavone, F, Barrick, TR, Morris, RG, Markus, HS (2010 b). Diffusion tensor imaging detects age-related white matter change over a two-year follow-up which is associated with working memory decline. Journal of Neurology, Neurosurgery and Psychiatry 81, 1319.CrossRefGoogle Scholar
Delis, DC, Kaplan, E, Kramer, JH (2001). The Delis-Kaplan Executive Function System. Psychological Corporation: San Antonio, TX.Google Scholar
Delis, DC, Kramer, JH, Kaplan, E, Ober, BA (2000). California Verbal Learning Test. Psychological Corporation: San Antonio, TX.Google Scholar
Elderkin-Thompson, V, Mintz, J, Haroon, E, Lavretsky, H, Kumar, A (2006). Executive dysfunction and memory in older patients with major and minor depression. Archives of Clinical Neuropsychology 22, 261270.CrossRefGoogle Scholar
Folstein, MF, Folstein, SE, McHugh, PR (1975). ‘Mini-mental State’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12, 189198.CrossRefGoogle Scholar
Fujikawa, T, Yamawaki, S, Touhouda, Y (1993). Incidence of silent cerebral infarction in patients with major depression. Stroke 24, 16311634.CrossRefGoogle ScholarPubMed
Golden, CJ (1978). Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. Skoelting: Chicago, IL.Google Scholar
Hamilton, MA (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5662.CrossRefGoogle Scholar
Herrmann, LL, Le Masurier, M, Ebmeier, KP (2008). White matter hyperintensities in late life depression: a systematic review. Journal of Neurology, Neurosurgery and Psychiatry 79, 619624.CrossRefGoogle ScholarPubMed
Janssen, J, Hulshoff Pol, HE, Schnack, HG, Kok, RM, Lampe, IK, de Leeuw, FE, Kahn, RS, Heeren, TJ (2007). Cerebral volume measurements and subcortical white matter lesions and short-term treatment response in late life depression. International Journal of Geriatric Psychiatry 22, 468474.CrossRefGoogle ScholarPubMed
Jiang, H, van Zijl, PC, Kim, J, Pearlson, GD, Mori, S (2006). DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Computer Methods and Programs in Biomedicine 81, 106116.CrossRefGoogle ScholarPubMed
Kennedy, KM, Raz, N (2009). Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47, 915927.CrossRefGoogle ScholarPubMed
Korten, NCM, Comijs, HC, Lamers, F, Penninx, BWJH (2012). Early and late onset depression in young and middle aged adults: differential symptomatology, characteristics and risk factors? Journal of Affective Disorders 138, 259267.CrossRefGoogle Scholar
Krishnan, KR (2002). Biological risk factors in late life depression. Biological Psychiatry 52, 185192.CrossRefGoogle ScholarPubMed
Kumar, A, Mintz, J, Bilker, W, Gottlieb, G (2002). Autonomous neurobiological pathways to late-life major depressive disorder: clinical and pathophysiological implications. Neuropsychopharmacology 26, 229236.CrossRefGoogle ScholarPubMed
Lamar, M, Charlton, RA, Morris, RG, Markus, HS (2010). The impact of subcortical white matter disease on mood in euthymic older adults: a diffusion tensor imaging study. American Journal of Geriatric Psychiatry 18, 634642.CrossRefGoogle ScholarPubMed
Lamar, M, Charlton, RA, Zhang, A, Kumar, A (2012). Differential associations between types of verbal memory and prefrontal brain structure in healthy aging and late life depression. Neuropsychologia 50, 18231829.CrossRefGoogle ScholarPubMed
Metwalli, NS, Benatar, M, Nair, G, Usher, S, Hu, X, Carew, JD (2010). Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Research 1348, 156164.CrossRefGoogle ScholarPubMed
Metzler-Baddeley, C, Jones, DK, Belaroussi, B, Aggleton, JP, O'Sullivan, MJ (2011). Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. Journal of Neuroscience 31, 1323613245.CrossRefGoogle ScholarPubMed
O'Sullivan, M, Summers, PE, Jones, DK, Jarosz, JM, Williams, SC, Markus, HS (2001). Normal-appearing white matter in ischemic leukoaraiosis: a diffusion tensor MRI study. Neurology 57, 23072310.CrossRefGoogle ScholarPubMed
Petrides, M, Alivistatos, B (2002). Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proceedings of the National Academy of Sciences USA 99, 56495654.CrossRefGoogle ScholarPubMed
Pujol, J, Bello, J, Deus, J, Martí-Vilalta, JL, Capdevila, A (1997). Lesions in the left arcuate fasciculus region and depressive symptoms in multiple sclerosis. Neurology 49, 11051110.CrossRefGoogle ScholarPubMed
Radloff, LS (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Pscyhological Measurement 1, 385401.CrossRefGoogle Scholar
Rapp, MA, Rieckmann, N, Lessman, DA, Tang, CY, Paulino, R, Burg, MM, Davidson, KW (2010). Persistent depressive symptoms after acute coronary syndrome are associated with compromised white matter integrity in the anterior cingulate: a pilot study. Psychotherapy and Psychosomatics 79, 149155.CrossRefGoogle ScholarPubMed
Sexton, CE, McDermott, L, Kalu, UG, Herrmann, LL, Bradley, KM, Allan, CL, Le Masurier, M, MacKay, CE, Ebmeier, KP (2012). Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychological Medicine 42, 11951202.CrossRefGoogle ScholarPubMed
Shah, PJ, Ebmeier, KP, Glabus, MF, Goodwin, GM (1998). Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. British Journal of Psychiatry 172, 527532.CrossRefGoogle ScholarPubMed
Sheline, YI, Sanghavi, M, Mintun, MA, Gado, MH (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience 19, 50345043.CrossRefGoogle Scholar
Shimony, JS, Sheline, YI, D'Angelo, G, Epstein, AA, Benzinger, TLS, Mintun, MA, McKinstry, RC, Snyder, AZ (2009). Diffuse microstructural abnormalities of normal-appearing white matter in late life depression: a diffusion tensor imaging study. Biological Psychiatry 66, 245252.CrossRefGoogle ScholarPubMed
Song, SK, Sun, SW, Ramsbottom, MJ, Chang, C, Russell, J, Cross, AH (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17, 14291436.CrossRefGoogle Scholar
Song, SK, Yoshino, J, Le, TQ, Lin, SJ, Sun, SW, Cross, AH, Armstrong, RC (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26, 132140.CrossRefGoogle ScholarPubMed
Spitzer, RL, Williams, JBW, Gibbon, M, First, MB (1992). The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description. Archives of General Psychiatry 49, 624629.CrossRefGoogle ScholarPubMed
Sun, SW, Neil, JJ, Song, SK (2003). Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains. Magnetic Resonance in Medicine 50, 743748.CrossRefGoogle ScholarPubMed
Taylor, WD, MacFall, JR, Gerig, G, Krishnan, KRR (2007). Structural integrity of the uncinate fasciculus in geriatric depression: relationship with age of onset. Neuropsychiatric Disease and Treatment 3, 669674.Google ScholarPubMed
Taylor, WD, MacFall, JR, Payne, ME, McQuoid, DR, Provenzale, JM, Steffens, DC, Krishnan, KR (2004). Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. American Journal of Psychiatry 161, 12931296.CrossRefGoogle ScholarPubMed
Taylor, WD, MacFall, JR, Steffens, DC, Payne, ME, Provenzale, JM, Krishnan, KR (2003). Localization of age-associated white matter hyperintensities in late-life depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27, 539544.CrossRefGoogle ScholarPubMed
Wakana, S, Caprihan, A, Panzenboeck, MM, Fallon, JH, Perry, M, Gollub, RL, Hua, K, Zhang, J, Jiang, H, Dubey, P, Blitz, A, van Zijl, P, Mori, S (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630644.CrossRefGoogle ScholarPubMed
Wechsler, D (1997). Wechsler Adult Intelligence Scale – Third Edition (WAIS-III). Psychological Corporation: San Antonio, TX.Google Scholar
Wechsler, D, Wycherley, RJ, Benjamin, L, Callanan, M, Lavender, T, Crawford, JR, Mockler, D (1998). Wechsler Memory Scale – III (WMS-III). Psychological Corporation: London, UK.Google Scholar
Wheeler-Kingshott, CA, Cercignani, M (2009). About ‘axial’ and ‘radial’ diffusivities. Magnetic Resonance in Medicine 61, 12551260.CrossRefGoogle ScholarPubMed
Wolf, PA, D'Agostino, RB, Belanger, AJ, Kannel, WB (1991). Probability of stroke: a risk profile from the Framingham Study. Stroke 22, 312318.CrossRefGoogle ScholarPubMed
Woods, RP, Grafton, ST, Holmes, CJ, Cherry, SR, Mazziotta, JC (1998). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography 22, 139152.CrossRefGoogle ScholarPubMed
Zhang, A, Leow, A, Ajilore, O, Lamar, M, Yang, S, Joseph, J, Medina, J, Zhan, L, Kumar, A (2012). Quantitative tract-specific measures of uncinate and cingulum in major depression using diffusion tensor imaging. Neuropsychopharmacology 37, 959967.CrossRefGoogle ScholarPubMed
Supplementary material: File

Charlton Supplementary Material

Table

Download Charlton Supplementary Material(File)
File 45 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

White-matter tract integrity in late-life depression: associations with severity and cognition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

White-matter tract integrity in late-life depression: associations with severity and cognition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

White-matter tract integrity in late-life depression: associations with severity and cognition
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *