Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-scc96 Total loading time: 0.216 Render date: 2021-06-20T03:32:31.485Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Pathways from performance monitoring to negative symptoms and functional outcomes in psychotic disorders

Published online by Cambridge University Press:  22 April 2020

Dan Foti
Affiliation:
Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
Greg Perlman
Affiliation:
Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
Evelyn J. Bromet
Affiliation:
Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
Philip D. Harvey
Affiliation:
University of Miami Miller School of Medicine, Miami, FL, USA
Greg Hajcak
Affiliation:
Department of Psychology and Biomedical Science, Florida State University, Tallahassee, FL, USA
Daniel H. Mathalon
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
Roman Kotov
Affiliation:
Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
Corresponding
E-mail address:

Abstract

Background

Performance monitoring entails rapid error detection to maintain task performance. Impaired performance monitoring is a candidate pathophysiological process in psychotic disorders, which may explain the broader deficit in executive function and its known associations with negative symptoms and poor functioning. The current study models cross-sectional pathways bridging neurophysiological measures of performance monitoring with executive function, symptoms, and functioning.

Methods

Data were from the 20-year assessment of the Suffolk County Mental Health Project. Individuals with psychotic disorders (N = 181) were originally recruited from inpatient psychiatric facilities. Data were also collected from a geographically and demographically matched group with no psychosis history (N = 242). Neural measures were the error-related negativity (ERN) and error positivity (Pe). Structural equation modeling tested mediation pathways.

Results

Blunted ERN and Pe in the clinical cohort related to impaired executive function (r = 0.26–0.35), negative symptom severity (r = 0.17–0.25), and poor real-world functioning (r = 0.17–0.19). Associations with executive function were consistent across groups. Multiple potential pathways were identified in the clinical cohort: reduced ERN to inexpressivity was mediated by executive function (β = 0.10); reduced Pe to global functioning was mediated by executive function and avolition (β = 0.10).

Conclusions

This supports a transdiagnostic model of psychotic disorders by which poor performance monitoring contributes to impaired executive function, which contributes to negative symptoms and poor real-world functioning. If supported by future longitudinal research, these pathways could inform the development of targeted interventions to address cognitive and functional deficits that are central to psychotic disorders.

Type
Original Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Alain, C., McNeely, H. E., He, Y., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12(8), 840846. doi: 10.1093/cercor/12.8.840CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1983 a). Scale for the assessment of negative symptoms (SANS). Iowa City: University of Iowa.Google Scholar
Andreasen, N. C. (1983 b). Scale for the assessment of positive symptoms (SAPS). Iowa City: University of Iowa.Google Scholar
Bates, A. T., Kiehl, K. A., Laurens, K. R., & Liddle, P. F. (2002). Error-related negativity and correct response negativity in schizophrenia. Clinical Neurophysiology, 113(9), 14541463. doi: S1388245702001542CrossRefGoogle Scholar
Bates, A. T., Liddle, P. F., Kiehl, K. A., & Ngan, E. T. (2004). State dependent changes in error monitoring in schizophrenia. Journal of Psychiatric Research, 38(3), 347356. doi: 10.1016/j.jpsychires.2003.11.002CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289300. doi: 10.1111/j.2517-6161.1995.tb02031.xGoogle Scholar
Blanchard, J. J., & Cohen, A. S. (2006). The structure of negative symptoms within schizophrenia: Implications for assessment. Schizophrenia Bulletin, 32(2), 238245. doi: 10.1093/schbul/sbj013CrossRefGoogle ScholarPubMed
Boldt, A., & Yeung, N. (2015). Shared neural markers of decision confidence and error detection. Journal of Neuroscience, 35(8), 34783484. doi: 10.1523/JNEUROSCI.0797-14.2015CrossRefGoogle ScholarPubMed
Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric Disease and Treatment, 2(4), 531536. doi: 10.2147/nedt.2006.2.4.531CrossRefGoogle Scholar
Bowie, C. R., Leung, W. W., Reichenberg, A., McClure, M. M., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2008). Predicting schizophrenia patients' real-world behavior with specific neuropsychological and functional capacity measures. Biological Psychiatry, 63(5), 505511. doi: 10.1016/j.biopsych.2007.05.022CrossRefGoogle ScholarPubMed
Bowie, C. R., Reichenberg, A., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2006). Determinants of real-world functional performance in schizophrenia subjects: Correlations with cognition, functional capacity, and symptoms. American Journal of Psychiatry, 163(3), 418425. doi: 10.1176/appi.ajp.163.3.418CrossRefGoogle ScholarPubMed
Bromet, E. J., Kotov, R., Fochtmann, L. J., Carlson, G. A., Tanenberg-Karant, M., Ruggero, C., & Chang, S. W. (2011). Diagnostic shifts during the decade following first admission for psychosis. American Journal of Psychiatry, 168(11), 11861194. doi: 10.1176/appi.ajp.2011.11010048CrossRefGoogle Scholar
Bromet, E. J., Schwartz, J. E., Fennig, S., Geller, L., Jandorf, L., Kovasznay, B., … Rich, C. (1992). The epidemiology of psychosis: The Suffolk County Mental Health project. Schizophrenia Bulletin, 18(2), 243255. doi: 10.1093/schbul/18.2.243CrossRefGoogle ScholarPubMed
Buchanan, R. W., Davis, M., Goff, D., Green, M. F., Keefe, R. S., Leon, A. C., … Marder, S. R. (2005). A summary of the FDA-NIMH-MATRICS workshop on clinical trial design for neurocognitive drugs for schizophrenia. Schizophrenia Bulletin, 31(1), 519. doi: 10.1093/schbul/sbi020CrossRefGoogle Scholar
Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV): Exploratory and higher order factor analyses. Psychological Assessment, 22(4), 827836. doi: 10.1037/a0020429CrossRefGoogle ScholarPubMed
Cohen, A. S., McGovern, J. E., Dinzeo, T. J., & Covington, M. A. (2014). Speech deficits in serious mental illness: A cognitive resource issue? Schizophrenia Research, 160(1-3), 173179. doi: 10.1016/j.schres.2014.10.032CrossRefGoogle ScholarPubMed
Culbreth, A. J., Foti, D., Barch, D. M., Hajcak, G., & Kotov, R. (2018). Electrocortical responses to emotional stimuli in psychotic disorders: Comparing schizophrenia spectrum disorders and affective psychosis. Frontiers in Psychiatry, 9, 586. 10.3389/fpsyt.2018.00586.CrossRefGoogle ScholarPubMed
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25(50), 1173011737. doi: 10.1523/JNEUROSCI.3286-05.2005CrossRefGoogle ScholarPubMed
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143149. doi: 10.3758/BF03203267CrossRefGoogle Scholar
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78(6), 447455. doi: 10.1016/0013-4694(91)90062-9CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2001). Structured Clinical Interview for DSM-IV-TR Axis I Disorders – Patient Edition (SCID-I/P 2/2001 Revision). New York: Biometrics Research Department, New York State Psychiatric Institute.Google Scholar
Firth, J., Stubbs, B., Rosenbaum, S., Vancampfort, D., Malchow, B., Schuch, F., … Yung, A. R. (2017). Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophrenia Bulletin, 43(3), 546556. doi: 10.1093/schbul/sbw115Google ScholarPubMed
Foti, D., Kotov, R., Bromet, E. J., & Hajcak, G. (2012). Beyond the broken error-related negativity: Functional and diagnostic correlates of error processing in psychosis. Biological Psychiatry, 71(10), 864872. doi: 10.1016/j.biopsych.2012.01.007CrossRefGoogle ScholarPubMed
Foti, D., Kotov, R., & Hajcak, G. (2013). Psychometric considerations in using error-related brain activity as a biomarker in psychotic disorders. Journal of Abnormal Psychology, 122(2), 520531. doi: 10.1037/a0032618CrossRefGoogle ScholarPubMed
Foti, D., Perlman, G., Hajcak, G., Mohanty, A., Jackson, F., & Kotov, R. (2016). Impaired error processing in late-phase psychosis: Four-year stability and relationships with negative symptoms. Schizophrenia Research, 176(2–3), 520526. doi: 10.1016/j.schres.2016.05.009CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Papanastasiou, E., Stahl, D., Rocchetti, M., Carpenter, W., Shergill, S., & McGuire, P. (2015). Treatments of negative symptoms in schizophrenia: Meta-analysis of 168 randomized placebo-controlled trials. Schizophrenia Bulletin, 41(4), 892899. doi: 10.1093/schbul/sbu170CrossRefGoogle ScholarPubMed
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385. doi: 10.1111/j.1467-9280.1993.tb00586.xCrossRefGoogle Scholar
Gold, J. M., Strauss, G. P., Waltz, J. A., Robinson, B. M., Brown, J. K., & Frank, M. J. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry, 74(2), 130136. doi: 10.1016/j.biopsych.2012.12.022CrossRefGoogle ScholarPubMed
Goldman, H. H., Skodol, A. E., & Lave, T. R. (1992). Revising axis V for DSM-IV: A review of measures of social functioning. American Journal of Psychiatry, 149(9), 11481156. doi: 10.1176/ajp.149.9.1148Google ScholarPubMed
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153(3), 321330. doi: 10.1176/ajp.153.3.321Google Scholar
Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the ‘right stuff’? Schizophrenia Bulletin, 26(1), 119136. doi: 10.1093/oxfordjournals.schbul.a033430CrossRefGoogle Scholar
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40(6), 895903. doi: 10.1111/1469-8986.00107CrossRefGoogle ScholarPubMed
Harvey, P. D., Khan, A., & Keefe, R. S. E. (2017). Using the Positive and Negative Syndrome Scale (PANSS) to define different domains of negative symptoms: Prediction of everyday functioning by impairments in emotional expression and emotional experience. Innovations in Clinical Neuroscience, 14(11–12), 1822.Google ScholarPubMed
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). New York: Guilford Press.Google Scholar
Heinrichs, D. W., Hanlon, T. E., & Carpenter, W. T. Jr. (1984). The quality of life scale: An instrument for rating the schizophrenic deficit syndrome. Schizophrenia Bulletin, 10(3), 388398. doi: 10.1093/schbul/10.3.388CrossRefGoogle ScholarPubMed
Hill, S. K., Reilly, J. L., Keefe, R. S., Gold, J. M., Bishop, J. R., Gershon, E. S., … Sweeney, J. A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. American Journal of Psychiatry, 170(11), 12751284. doi: 10.1176/appi.ajp.2013.12101298CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679709. doi: 10.1037/0033-295X.109.4.679CrossRefGoogle ScholarPubMed
Holroyd, C. B., Yeung, N., Coles, M. G., & Cohen, J. D. (2005). A mechanism for error detection in speeded response time tasks. Journal of Experimental Psychology: General, 134(2), 163191. doi: 10.1037/0096-3445.134.2.163CrossRefGoogle ScholarPubMed
Horan, W. P., Foti, D., Hajcak, G., Wynn, J. K., & Green, M. F. (2012). Impaired neural response to internal but not external feedback in schizophrenia. Psychological Medicine, 42(8), 16371647. doi: 10.1017/S0033291711002819CrossRefGoogle ScholarPubMed
Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., & Brem, S. (2015). Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI. NeuroImage, 105, 395407. doi: 10.1016/j.neuroimage.2014.10.028CrossRefGoogle ScholarPubMed
Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187193. doi: 10.1038/nature09552CrossRefGoogle ScholarPubMed
Jackson, F., Foti, D., Kotov, R., Perlman, G., Mathalon, D. H., & Proudfit, G. H. (2014). An incongruent reality: The N400 in relation to psychosis and recovery. Schizophrenia Research, 160(1-3), 208215. doi: 10.1016/j.schres.2014.09.039CrossRefGoogle ScholarPubMed
Kansal, V., Patriciu, I., & Kiang, M. (2014). Illness insight and neurophysiological error-processing deficits in schizophrenia. Schizophrenia Research, 156(1), 122127. doi: 10.1016/j.schres.2014.03.023CrossRefGoogle Scholar
Kerns, J. G., Nuechterlein, K. H., Braver, T. S., & Barch, D. M. (2008). Executive functioning component mechanisms and schizophrenia. Biological Psychiatry, 64(1), 2633. doi: 10.1016/j.biopsych.2008.04.027CrossRefGoogle Scholar
Kim, M. S., Kang, S. S., Shin, K. S., Yoo, S. Y., Kim, Y. Y., & Kwon, J. S. (2006). Neuropsychological correlates of error negativity and positivity in schizophrenia patients. Psychiatry and Clinical Neurosciences, 60(3), 303311. doi: 10.1111/j.1440-1819.2006.01506.xCrossRefGoogle ScholarPubMed
Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108(2), 337346. doi: 10.1037/0021-843X.108.2.337CrossRefGoogle ScholarPubMed
Kotov, R., Foti, D., Li, K., Bromet, E. J., Hajcak, G., & Ruggero, C. J. (2016). Validating dimensions of psychosis symptomatology: Neural correlates and 20-year outcomes. Journal of Abnormal Psychology, 125(8), 11031119. doi: 10.1037/abn0000188CrossRefGoogle ScholarPubMed
Kring, A. M., & Barch, D. M. (2014). The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral outputs. European Neuropsychopharmacology, 24(5), 725736. doi: 10.1016/j.euroneuro.2013.06.007CrossRefGoogle ScholarPubMed
Kring, A. M., Gur, R. E., Blanchard, J. J., Horan, W. P., & Reise, S. P. (2013). The Clinical Assessment Interview for Negative Symptoms (CAINS): Final development and validation. American Journal of Psychiatry, 170(2), 165172. doi: 10.1176/appi.ajp.2012.12010109CrossRefGoogle ScholarPubMed
Laurens, K. R., Hodgins, S., Mould, G. L., West, S. A., Schoenberg, P. L., Murray, R. M., & Taylor, E. A. (2010). Error-related processing dysfunction in children aged 9 to 12 years presenting putative antecedents of schizophrenia. Biological Psychiatry, 67(3), 238245. doi: 10.1016/j.biopsych.2009.07.030CrossRefGoogle ScholarPubMed
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York, NY: Oxford University Press.Google Scholar
Llerena, K., Wynn, J. K., Hajcak, G., Green, M. F., & Horan, W. P. (2016). Patterns and reliability of EEG during error monitoring for internal versus external feedback in schizophrenia. International Journal of Psychophysiology, 105, 3946. doi: 10.1016/j.ijpsycho.2016.04.012CrossRefGoogle Scholar
Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111(1), 2241. doi: 10.1037/0021-843X.111.1.22CrossRefGoogle Scholar
Mathalon, D. H., Whitfield, S. L., & Ford, J. M. (2003). Anatomy of an error: ERP and fMRI. Biological Psychology, 64(1–2), 119141. doi: 10.1016/S0301-0511(03)00105-4CrossRefGoogle ScholarPubMed
Minzenberg, M. J., Gomes, G. C., Yoon, J. H., Swaab, T. Y., & Carter, C. S. (2014). Disrupted action monitoring in recent-onset psychosis patients with schizophrenia and bipolar disorder. Psychiatry Research, 221(1), 114121. doi: 10.1016/j.pscychresns.2013.11.003CrossRefGoogle ScholarPubMed
Morris, S. E., Yee, C. M., & Nuechterlein, K. H. (2006). Electrophysiological analysis of error monitoring in schizophrenia. Journal of Abnormal Psychology, 115(2), 239250. doi: 10.1037/0021-843X.115.2.239CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user's guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752760.CrossRefGoogle ScholarPubMed
O'Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., … Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and without awareness: A high-density electrical mapping study. European Journal of Neuroscience, 25(8), 25712579. doi: 10.1111/j.1460-9568.2007.05477.xCrossRefGoogle ScholarPubMed
Perez, V. B., Ford, J. M., Roach, B. J., Woods, S. W., McGlashan, T. H., Srihari, V. H., … Mathalon, D. H. (2012). Error monitoring dysfunction across the illness course of schizophrenia. Journal of Abnormal Psychology, 121(2), 372387. doi: 10.1037/a0025487CrossRefGoogle ScholarPubMed
Perlman, G., Foti, D., Jackson, F., Kotov, R., Constantino, E., & Hajcak, G. (2015). Clinical significance of auditory target P300 subcomponents in psychosis: Differential diagnosis, symptom profiles, and course. Schizophrenia Research, 165(2–3), 145151. doi: 10.1016/j.schres.2015.04.013CrossRefGoogle ScholarPubMed
Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133(5), 833858. doi: 10.1037/0033-2909.133.5.833CrossRefGoogle ScholarPubMed
Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 10221029. doi: 10.1093/schbul/sbn044CrossRefGoogle ScholarPubMed
Reinhart, R. M., Zhu, J., Park, S., & Woodman, G. F. (2015). Medial-frontal stimulation enhances learning in schizophrenia by restoring prediction error signaling. Journal of Neuroscience, 35(35), 1223212240. doi: 10.1523/JNEUROSCI.1717-15.2015CrossRefGoogle ScholarPubMed
Revell, E. R., Neill, J. C., Harte, M., Khan, Z., & Drake, R. J. (2015). A systematic review and meta-analysis of cognitive remediation in early schizophrenia. Schizophrenia Research, 168(1-2), 213222. doi: 10.1016/j.schres.2015.08.017CrossRefGoogle ScholarPubMed
Schneider, S., Bahmer, T. J., Metzger, F. G., Reif, A., Polak, T., Pfuhlmann, B., … Ehlis, A. C. (2013). Quetiapine and flupentixol differentially improve anterior cingulate cortex function in schizophrenia patients: An event-related potential study. International Journal of Neuropsychopharmacology, 16(9), 19111925. doi: 10.1017/S1461145713000540CrossRefGoogle ScholarPubMed
Shaffer, J. J., Peterson, M. J., McMahon, M. A., Bizzell, J., Calhoun, V., van Erp, T. G., … Manoach, D. S. (2015). Neural correlates of schizophrenia negative symptoms: Distinct subtypes impact dissociable brain circuits. Molecular Neuropsychiatry, 1(4), 191200. doi: 10.1159/000440979CrossRefGoogle ScholarPubMed
Sheffield, J. M., Kandala, S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., Sweeney, J. A., … Barch, D. M. (2017). Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry, 74(6), 605613. doi: 10.1001/jamapsychiatry.2017.0669CrossRefGoogle ScholarPubMed
Silverstein, A. B. (1982). Factor structure of the Wechsler Adult Intelligence Scale – Revised. Journal of Consulting and Clinical Psychology, 50(5), 661664. doi: 10.1037/0022-006X.50.5.661CrossRefGoogle Scholar
Simmonite, M., Bates, A. T., Groom, M. J., Jackson, G. M., Hollis, C., & Liddle, P. F. (2012). Error processing-associated event-related potentials in schizophrenia and unaffected siblings. International Journal of Psychophysiology, 84(1), 7479. doi: 10.1016/j.ijpsycho.2012.01.012CrossRefGoogle ScholarPubMed
Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests (2nd ed.). New York, NY: Oxford University Press.Google Scholar
Strassnig, M. T., Raykov, T., O'Gorman, C., Bowie, C. R., Sabbag, S., Durand, D., … Harvey, P. D. (2015). Determinants of different aspects of everyday outcome in schizophrenia: The roles of negative symptoms, cognition, and functional capacity. Schizophrenia Research, 165(1), 7682. doi: 10.1016/j.schres.2015.03.033CrossRefGoogle Scholar
Strauss, G. P., Horan, W. P., Kirkpatrick, B., Fischer, B. A., Keller, W. R., Miski, P., … Carpenter, W. T. Jr., (2013). Deconstructing negative symptoms of schizophrenia: Avolition-apathy and diminished expression clusters predict clinical presentation and functional outcome. Journal of Psychiatric Research, 47(6), 783790. doi: 10.1016/j.jpsychires.2013.01.015CrossRefGoogle ScholarPubMed
Thomas, M. L., Green, M. F., Hellemann, G., Sugar, C. A., Tarasenko, M., Calkins, M. E., … Light, G. A. (2017). Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry, 74(1), 3746. doi: 10.1001/jamapsychiatry.2016.2980CrossRefGoogle Scholar
Velthorst, E., Fett, A. J., Reichenberg, A., Perlman, G., van Os, J., Bromet, E. J., & Kotov, R. (2017). The 20-year longitudinal trajectories of social functioning in individuals with psychotic disorders. American Journal of Psychiatry, 174(11), 10751085. doi: 10.1176/appi.ajp.2016.15111419CrossRefGoogle ScholarPubMed
Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V., & Nuechterlein, K. H. (2009). Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: A meta-analysis. Schizophrenia Research, 113(2-3), 189199. doi: 10.1016/j.schres.2009.03.035CrossRefGoogle ScholarPubMed
Vocat, R., Pourtois, G., & Vuilleumier, P. (2008). Unavoidable errors: A spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task. Neuropsychologia, 46(10), 25452555. doi: 10.1016/j.neuropsychologia.2008.04.006CrossRefGoogle Scholar
Wechsler, D. (1981). Wechler adult intelligence scale--revised manual. New York, NY: The Psychological Corporation.Google Scholar
Weinberg, A., Riesel, A., & Hajcak, G. (2012). Integrating multiple perspectives on error-related brain activity: The ERN as a neural indicator of trait defensive reactivity. Motivation and Emotion, 36, 84100. doi: 10.1007/s11031-011-9269-y.CrossRefGoogle Scholar
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. American Journal of Psychiatry, 168(5), 472485. doi: 10.1176/appi.ajp.2010.10060855CrossRefGoogle ScholarPubMed
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931959. doi: 10.1037/0033-295X.111.4.939CrossRefGoogle ScholarPubMed
Zayat, E., Rempfer, M., Gajewski, B., & Brown, C. E. (2011). Patterns of association between performance in a natural environment and measures of executive function in people with schizophrenia. Psychiatry Research, 187(1–2), 15. doi: 10.1016/j.psychres.2010.11.011CrossRefGoogle Scholar
Supplementary material: File

Foti et al. supplementary material

Foti et al. supplementary material

Download Foti et al. supplementary material(File)
File 39 KB
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pathways from performance monitoring to negative symptoms and functional outcomes in psychotic disorders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pathways from performance monitoring to negative symptoms and functional outcomes in psychotic disorders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pathways from performance monitoring to negative symptoms and functional outcomes in psychotic disorders
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *