Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-15T20:17:36.085Z Has data issue: false hasContentIssue false

Inflammation is correlated with abnormal functional connectivity in unmedicated bipolar depression: an independent component analysis study of resting-state fMRI

Published online by Cambridge University Press:  19 February 2021

Guixian Tang
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Pan Chen
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Guanmao Chen
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Shuming Zhong
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
JiaYing Gong
Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
Hui Zhong
Biomedical Translational Research Institute, Jinan University, Guangzhou 510630, China
Tao Ye
Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Feng Chen
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Jurong Wang
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Zhenye Luo
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Zhangzhang Qi
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Yanbin Jia
Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Ying Wang*
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Li Huang
Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
Author for correspondence: Ying Wang, E-mail:



Inflammation might play a role in bipolar disorder (BD), but it remains unclear the relationship between inflammation and brain structural and functional abnormalities in patients with BD. In this study, we focused on the alterations of functional connectivity (FC), peripheral pro-inflammatory cytokines and their correlations to investigate the role of inflammation in FC in BD depression.


In this study, 42 unmedicated patients with BD II depression and 62 healthy controls (HCs) were enrolled. Resting-state-functional magnetic resonance imaging was performed in all participants and independent component analysis was used. Serum levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) were measured in all participants. Correlation between FC values and IL-6 and IL-8 levels in BD was calculated.


Compared with the HCs, BD II patients showed decreased FC in the left orbitofrontal cortex (OFC) implicating the limbic network and the right precentral gyrus implicating the somatomotor network. BD II showed increased IL-6 (p = 0.039), IL-8 (p = 0.002) levels. Moreover, abnormal FC in the right precentral gyrus were inversely correlated with the IL-8 (r = −0.458, p = 0.004) levels in BD II. No significant correlation was found between FC in the left OFC and cytokines levels.


Our findings that serum IL-8 levels are associated with impaired FC in the right precentral gyrus in BD II patients suggest that inflammation might play a crucial role in brain functional abnormalities in BD.

Original Article
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



These authors contributed equally to this work.


Anticevic, A., Brumbaugh, M. S., Winkler, A. M., Lombardo, L. E., Barrett, J., Corlett, P. R., … Glahn, D. C. (2013). Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biological Psychiatry, 73(6), 565573. doi: 10.1016/j.biopsych.2012.07.031CrossRefGoogle ScholarPubMed
Bai, Y.-M., Chen, M.-H., Hsu, J.-W., Huang, K.-L., Tu, P.-C., Chang, W.-C., … Tsai, S.-J. (2020). A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder. Journal of Neuroinflammation, 17(1), 4242. doi: 10.1186/s12974-020-1724-9CrossRefGoogle ScholarPubMed
Baune, B. T., Ponath, G., Golledge, J., Varga, G., Arolt, V., Rothermundt, M., & Berger, K. (2008). Association between IL-8 cytokine and cognitive performance in an elderly general population – the MEMO-study. Neurobiology of Aging, 29(6), 937944. doi: 10.1016/j.neurobiolaging.2006.12.003CrossRefGoogle Scholar
Benedetti, F., Poletti, S., Hoogenboezem, T. A., Locatelli, C., de Wit, H., Wijkhuijs, A. J. M., … Drexhage, H. A. (2017). Higher baseline proinflammatory cytokines mark poor antidepressant response in bipolar disorder. Journal of Clinical Psychiatry, 78(8), E986E993. doi: 10.4088/JCP.16m11310CrossRefGoogle ScholarPubMed
Blumberg, H. P., Stern, E., Ricketts, S., Martinez, D., de Asis, J., White, T., … Silbersweig, D. A. (1999). Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. The American Journal of Psychiatry, 156(12), 19861988. doi: 10.1176/ajp.156.12.1986CrossRefGoogle ScholarPubMed
Bowden, C. L. (2005). A different depression: Clinical distinctions between bipolar and unipolar depression. Journal of Affective Disorders, 84(2-3), 117125. doi: 10.1016/S0165-0327(03)00194-0CrossRefGoogle ScholarPubMed
Bracht, T., Steinau, S., Federspiel, A., Schneider, C., Wiest, R., & Walther, S. (2018). Physical activity is associated with left corticospinal tract microstructure in bipolar depression. Neuroimage. Clinical, 20, 939945. doi: 10.1016/j.nicl.2018.09.033CrossRefGoogle ScholarPubMed
Brietzke, E., Stertz, L., Fernandes, B. S., Kauer-Sant'anna, M., Mascarenhas, M., Escosteguy Vargas, A., … Kapczinski, F. (2009). Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. Journal of Affective Disorders, 116(3), 214217. doi: 10.1016/j.jad.2008.12.001CrossRefGoogle ScholarPubMed
Buyukdura, J. S., McClintock, S. M., & Croarkin, P. E. (2011). Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(2), 395409. doi: 10.1016/j.pnpbp.2010.10.019CrossRefGoogle ScholarPubMed
Calhoun, V. D., Adali, T., McGinty, V. B., Pekar, J. J., Watson, T. D., & Pearlson, G. D. (2001). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. Neuroimage, 14(5), 10801088. doi: 10.1006/nimg.2001.0921CrossRefGoogle Scholar
Cantisani, A., Stegmayer, K., Bracht, T., Federspiel, A., Wiest, R., Horn, H., … Walther, S. (2016). Distinct resting-state perfusion patterns underlie psychomotor retardation in unipolar vs. bipolar depression. Acta Psychiatrica Scandinavica, 134(4), 329338. doi: 10.1111/acps.12625CrossRefGoogle ScholarPubMed
Carper, R. A., Solders, S., Treiber, J. M., Fishman, I., & Müller, R. A. (2015). Corticospinal tract anatomy and functional connectivity of primary motor cortex in autism. Journal of the American Academy of Child & Adolescent Psychiatry, 54(10), 859867. doi: 10.1016/j.jaac.2015.07.007CrossRefGoogle ScholarPubMed
Catani, M., Dell'acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 17241737. doi: 10.1016/j.neubiorev.2013.07.001CrossRefGoogle ScholarPubMed
Chai, X. J., Whitfield-Gabrieli, S., Shinn, A. K., Gabrieli, J. D. E., Castanon, A. N., McCarthy, J. M., … Oenguer, D. (2011). Abnormal medial prefrontal Cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology, 36(10), 20092017. doi: 10.1038/npp.2011.88CrossRefGoogle ScholarPubMed
Chen, L., Wang, Y., Niu, C., Zhong, S., Hu, H., Chen, P., … Huang, R. (2018). Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. Neuroimage-Clinical, 20, 4250. doi: 10.1016/j.nicl.2018.07.002CrossRefGoogle ScholarPubMed
Cheng, X., Chen, J., Zhang, X., Zhang, Y., Wu, Q., Ma, Q., … Cao, L. (2020). Alterations in resting-state global brain connectivity in bipolar I disorder patients with prior suicide attempt. Bipolar Disorders. doi: 10.1111/bdi.13012Google ScholarPubMed
Chi, G. C., Fitzpatrick, A. L., Sharma, M., Jenny, N. S., Lopez, O. L., & DeKosky, S. T. (2017). Inflammatory biomarkers predict domain-specific cognitive decline in older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(6), 796803. doi: 10.1093/gerona/glw155Google ScholarPubMed
De Berardis, D., Fornaro, M., Orsolini, L., Valchera, A., Carano, A., Vellante, F., … Di Giannantonio, M. (2017). Alexithymia and suicide risk in psychiatric disorders: A mini-review. Frontiers in Psychiatry, 8, 148. doi: 10.3389/fpsyt.2017.00148CrossRefGoogle ScholarPubMed
Delvecchio, G., Fossati, P., Boyer, P., Brambilla, P., Falkai, P., Gruber, O., … Frangou, S. (2012). Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: A voxel-based meta-analysis of functional magnetic resonance imaging studies. European Neuropsychopharmacology, 22(2), 100113. doi: 10.1016/j.euroneuro.2011.07.003CrossRefGoogle ScholarPubMed
Du, Y., Fu, Z., & Calhoun, V. D. (2018). Classification and prediction of brain disorders using functional connectivity: Promising but challenging. Frontiers in Neuroscience, 12, 525. doi:10.3389/fnins.2018.00525.CrossRefGoogle ScholarPubMed
Dutra, S. J., Man, V., Kober, H., Cunningham, W. A., & Gruber, J. (2017). Disrupted cortico-limbic connectivity during reward processing in remitted bipolar I disorder. Bipolar Disorders, 19(8), 661675. doi: 10.1111/bdi.12560CrossRefGoogle ScholarPubMed
Ebbesen, C. L., & Brecht, M. (2017). Motor cortex - to act or not to act? Nature reviews. Neuroscience, 18(11), 694705. doi: 10.1038/nrn.2017.119CrossRefGoogle ScholarPubMed
Eker, C., Simsek, F., Yilmazer, E. E., Kitis, O., Cinar, C., Eker, O. D., … Gonul, A. S. (2014). Brain regions associated with risk and resistance for bipolar I disorder: A voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disorders, 16(3), 249261. doi: 10.1111/bdi.12181CrossRefGoogle ScholarPubMed
Engel-Yeger, B., Muzio, C., Rinosi, G., Solano, P., Geoffroy, P. A., Pompili, M., … Serafini, G. (2016). Extreme sensory processing patterns and their relation with clinical conditions among individuals with major affective disorders. Psychiatry Research, 236, 112118. doi: 10.1016/j.psychres.2015.12.022CrossRefGoogle ScholarPubMed
Felger, J. C. (2018). Imaging the role of inflammation in mood and anxiety-related disorders. Current Neuropharmacology, 16(5), 533558. doi: 10.2174/1570159X15666171123201142CrossRefGoogle Scholar
Frazier, J. A., Breeze, J. L., Papadimitriou, G., Kennedy, D. N., Hodge, S. M., Moore, C. M., … Makris, N. (2007). White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disorders, 9(8), 799809. doi: 10.1111/j.1399-5618.2007.00482.xCrossRefGoogle ScholarPubMed
Frey, B. N., Andreazza, A. C., Houenou, J., Jamain, S., Goldstein, B. I., Frye, M. A., … Young, L. T. (2013). Biomarkers in bipolar disorder: A positional paper from the international society for bipolar disorders biomarkers task force. Australian and New Zealand Journal of Psychiatry, 47(4), 321332. doi: 10.1177/0004867413478217CrossRefGoogle ScholarPubMed
Fung, G., Deng, Y., Zhao, Q., Li, Z., Qu, M., Li, K., … Chan, R. C. K. (2015). Distinguishing bipolar and major depressive disorders by brain structural morphometry: A pilot study. Bmc Psychiatry, 15, 298298. doi: 10.1186/s12888-015-0685-5CrossRefGoogle ScholarPubMed
Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry, 21(12), 16961709. doi: 10.1038/mp.2016.3CrossRefGoogle ScholarPubMed
Goldstein, B. I., Kemp, D. E., Soczynska, J. K., & McIntyre, R. S. (2009). Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: A systematic review of the literature. Journal of Clinical Psychiatry, 70(8), 10781090. doi: 10.4088/JCP.08r04505CrossRefGoogle ScholarPubMed
Gong, J., Chen, G., Jia, Y., Zhong, S., Zhao, L., Luo, X., … Wang, Y. (2019). Disrupted functional connectivity within the default mode network and salience network in unmedicated bipolar II disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 88, 1118. doi: 10.1016/j.pnpbp.2018.06.012CrossRefGoogle ScholarPubMed
Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 5667. doi: 10.1016/j.tics.2010.12.004CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 4348. doi: 10.1097/00001756-200001170-00009CrossRefGoogle ScholarPubMed
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66(5), 407414. doi: 10.1016/j.biopsych.2009.03.015CrossRefGoogle ScholarPubMed
Heringa, S. M., van den Berg, E., Reijmer, Y. D., Nijpels, G., Stehouwer, C. D., Schalkwijk, C. G., … Biessels, G. J. (2014). Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population - the Hoorn Study. Psychoneuroendocrinology, 40, 108118. doi: 10.1016/j.psyneuen.2013.11.011CrossRefGoogle Scholar
Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 12141222. doi: 10.1016/j.neuroimage.2004.03.027CrossRefGoogle ScholarPubMed
Houenou, J., Perlini, C., & Brambilla, P. (2015). Epidemiological and clinical aspects will guide the neuroimaging research in bipolar disorder. Epidemiology and Psychiatric Sciences, 24(2), 117120. doi: 10.1017/s2045796014000766CrossRefGoogle ScholarPubMed
Ishida, T., Donishi, T., Iwatani, J., Yamada, S., Takahashi, S., Ukai, S., … Kaneoke, Y. (2017). Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis. Heliyon, 3(6), e00335. doi:10.1016/j.heliyon.2017.e00335.CrossRefGoogle ScholarPubMed
James, A., Hough, M., James, S., Burge, L., Winmill, L., Nijhawan, S., … Zarei, M. (2011). Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disorders, 13(1), 1627. doi: 10.1111/j.1399-5618.2011.00891.xCrossRefGoogle ScholarPubMed
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825841.CrossRefGoogle ScholarPubMed
Jiang, X., Fu, S., Yin, Z., Kang, J., Wang, X., Zhou, Y., … Tang, Y. (2020). Common and distinct neural activities in frontoparietal network in first-episode bipolar disorder and major depressive disorder: Preliminary findings from a follow-up resting state fMRI study. Journal of Affective Disorders, 260, 653659. doi: 10.1016/j.jad.2019.09.063CrossRefGoogle ScholarPubMed
Jollant, F., Lawrence, N. S., Olie, E., O'Daly, O., Malafosse, A., Courtet, P., & Phillips, M. L. (2010). Decreased activation of lateral orbitofrontal cortex during risky choices under uncertainty is associated with disadvantageous decision-making and suicidal behavior. Neuroimage, 51(3), 12751281. doi: 10.1016/j.neuroimage.2010.03.027CrossRefGoogle ScholarPubMed
Jørgensen, K. N., Nerland, S., Norbom, L. B., Doan, N. T., Nesvåg, R., Mørch-Johnsen, L., … Agartz, I. (2016). Increased MRI-based cortical grey/white-matter contrast in sensory and motor regions in schizophrenia and bipolar disorder. Psychological Medicine, 46(9), 19711985. doi: 10.1017/S0033291716000593CrossRefGoogle ScholarPubMed
Khadka, S., Meda, S. A., Stevens, M. C., Glahn, D. C., Calhoun, V. D., Sweeney, J. A., … Pearlson, G. D. (2013). Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biological Psychiatry, 74(6), 458466. doi: 10.1016/j.biopsych.2013.04.024CrossRefGoogle ScholarPubMed
Kossmann, T., Stahel, P. F., Lenzlinger, P. M., Redl, H., Dubs, R. W., Trentz, O., … Morganti-Kossmann, M. C. (1997). Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 17(3), 280289. doi: 10.1097/00004647-199703000-00005CrossRefGoogle ScholarPubMed
Leite, J., Carvalho, S., Battistella, L. R., Caumo, W., & Fregni, F. (2017). Editorial: The role of primary motor cortex as a marker and modulator of pain control and emotional-affective processing. Frontiers in Human Neuroscience, 11, 270270. doi: 10.3389/fnhum.2017.00270CrossRefGoogle ScholarPubMed
Liberg, B., Adler, M., Jonsson, T., Landén, M., Rahm, C., Wahlund, L.-O., … Wahlund, B. (2013). The neural correlates of self-paced finger tapping in bipolar depression with motor retardation. Acta Neuropsychiatrica, 25(1), 4351. doi: 10.1111/j.1601-5215.2012.00659.xCrossRefGoogle ScholarPubMed
Liemburg, E. J., Vercammen, A., Ter Horst, G. J., Curcic-Blake, B., Knegtering, H., & Aleman, A. (2012). Abnormal connectivity between attentional, language and auditory networks in schizophrenia. Schizophrenia Research, 135(1-3), 1522. doi: 10.1016/j.schres.2011.12.003CrossRefGoogle ScholarPubMed
Lois, G., Gerchen, M. F., Kirsch, P., Kanske, P., Schönfelder, S., & Wessa, M. (2017). Large-scale network functional interactions during distraction and reappraisal in remitted bipolar and unipolar patients. Bipolar Disorders, 19(6), 487495. doi: 10.1111/bdi.12512CrossRefGoogle ScholarPubMed
Lu, Y.-R., Rao, Y.-B., Mou, Y.-J., Chen, Y., Lou, H.-F., Zhang, Y., … Fang, P. (2019). High concentrations of serum interleukin-6 and interleukin-8 in patients with bipolar disorder. Medicine, 98(7), e14419. doi:10.1097/md.0000000000014419.CrossRefGoogle ScholarPubMed
Lui, S., Yao, L., Xiao, Y., Keedy, S. K., Reilly, J. L., Keefe, R. S., … Sweeney, J. A. (2015). Resting-state brain function in schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychological Medicine, 45(1), 97108. doi: 10.1017/s003329171400110xCrossRefGoogle ScholarPubMed
Lyoo, I. K., Kim, M. J., Stoll, A. L., Demopulos, C. M., Parow, A. M., Dager, S. R., … Renshaw, P. F. (2004). Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry, 55(6), 648651. doi: 10.1016/j.biopsych.2003.10.017CrossRefGoogle ScholarPubMed
Magalhães, T. N. C., Weiler, M., Teixeira, C. V. L., Hayata, T., Moraes, A. S., Boldrini, V. O., … Balthazar, M. L. F. (2018). Systemic inflammation and multimodal biomarkers in amnestic mild cognitive impairment and alzheimer's disease. Molecular Neurobiology, 55(7), 56895697. doi: 10.1007/s12035-017-0795-9CrossRefGoogle ScholarPubMed
Mahon, K., Burdick, K. E., Wu, J., Ardekani, B. A., & Szeszko, P. R. (2012). Relationship between suicidality and impulsivity in bipolar I disorder: A diffusion tensor imaging study. Bipolar Disorders, 14(1), 8089. doi: 10.1111/j.1399-5618.2012.00984.xCrossRefGoogle ScholarPubMed
Marsland, A. L., Kuan, D. C., Sheu, L. K., Krajina, K., Kraynak, T. E., Manuck, S. B., & Gianaros, P. J. (2017). Systemic inflammation and resting state connectivity of the default mode network. Brain Behavior and Immunity, 62, 162170. doi: 10.1016/j.bbi.2017.01.013CrossRefGoogle ScholarPubMed
Martino, M., Magioncalda, P., Conio, B., Capobianco, L., Russo, D., Adavastro, G., … Northoff, G. (2020). Abnormal functional relationship of sensorimotor network with neurotransmitter-related nuclei via subcortical-cortical loops in manic and depressive phases of bipolar disorder. Schizophrenia Bulletin, 46(1), 163174. doi: 10.1093/schbul/sbz035CrossRefGoogle ScholarPubMed
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732741. doi: 10.1016/j.biopsych.2008.11.029CrossRefGoogle ScholarPubMed
Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nature reviews. Immunology, 16(1), 2234. doi: 10.1038/nri.2015.5CrossRefGoogle Scholar
Modabbernia, A., Taslimi, S., Brietzke, E., & Ashrafi, M. (2013). Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies. Biological Psychiatry, 74(1), 1525. doi: 10.1016/j.biopsych.2013.01.007CrossRefGoogle ScholarPubMed
Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F. (2015). Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory. Neuroimage, 104, 413422. doi: 10.1016/j.neuroimage.2014.09.046CrossRefGoogle ScholarPubMed
Nery, F. G., Monkul, E. S., & Lafer, B. (2013). Gray matter abnormalities as brain structural vulnerability factors for bipolar disorder: A review of neuroimaging studies of individuals at high genetic risk for bipolar disorder. Australian and New Zealand Journal of Psychiatry, 47(12), 11241135. doi: 10.1177/0004867413496482CrossRefGoogle ScholarPubMed
Neves, M. D. C. L., Albuquerque, M. R., Malloy-Diniz, L., Nicolato, R., Neves, F. S., de Souza-Duran, F. L., … Correa, H. (2015). A voxel-based morphometry study of gray matter correlates of facial emotion recognition in bipolar disorder. Psychiatry Research-Neuroimaging, 233(2), 158164. doi: 10.1016/j.pscychresns.2015.05.009CrossRefGoogle ScholarPubMed
Nusslock, R., Almeida, J. R., Forbes, E. E., Versace, A., Frank, E., Labarbara, E. J., … Phillips, M. L. (2012). Waiting to win: Elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disorders, 14(3), 249260. doi: 10.1111/j.1399-5618.2012.01012.xCrossRefGoogle ScholarPubMed
Oenguer, D., Lundy, M., Greenhouse, I., Shinn, A. K., Menon, V., Cohen, B. M., & Renshaw, P. F. (2010). Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Research-Neuroimaging, 183(1), 5968. doi: 10.1016/j.pscychresns.2010.04.008CrossRefGoogle Scholar
Oertel-Knoechel, V., Reinke, B., Hornung, A., Knoechel, C., Matura, S., Knopf, M., … Linden, D. E. J. (2012). Patterns of autobiographical memory in bipolar disorder examined by psychometric and functional neuroimaging methods. Journal of Nervous and Mental Disease, 200(4), 296304. doi: 10.1097/NMD.0b013e31824ceef7CrossRefGoogle Scholar
Perez, D. L., Vago, D. R., Pan, H., Root, J., Tuescher, O., Fuchs, B. H., … Stern, E. (2016). Frontolimbic neural circuit changes in emotional processing and inhibitory control associated with clinical improvement following transference-focused psychotherapy in borderline personality disorder. Psychiatry and Clinical Neurosciences, 70(1), 5161. doi: 10.1111/pcn.12357CrossRefGoogle ScholarPubMed
Petrovic, P., Ekman, C. J., Klahr, J., Tigerström, L., Rydén, G., Johansson, A. G., … Landén, M. (2016). Significant grey matter changes in a region of the orbitofrontal cortex in healthy participants predicts emotional dysregulation. Social Cognitive and Affective Neuroscience, 11(7), 10411049. doi: 10.1093/scan/nsv072CrossRefGoogle Scholar
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 833857. doi: 10.1038/mp.2008.65CrossRefGoogle ScholarPubMed
Phillips, M. L., & Swartz, H. A. (2014). A critical appraisal of neuroimaging studies of bipolar disorder: Toward a new conceptualization of underlying neural circuitry and a road map for future research. The American journal of psychiatry, 171(8), 829843. doi: 10.1176/appi.ajp.2014.13081008CrossRefGoogle Scholar
Qiu, S., Chen, F., Chen, G., Jia, Y., Gong, J., Luo, X., … Wang, Y. (2019). Abnormal resting-state regional homogeneity in unmedicated bipolar II disorder. Journal of Affective Disorders, 256, 604610. doi: 10.1016/j.jad.2019.06.035CrossRefGoogle ScholarPubMed
Remlinger-Molenda, A., Wojciak, P., Michalak, M., & Rybakowski, J. (2012). [Activity of selected cytokines in bipolar patients during manic and depressive episodes]. Psychiatria Polska, 46(4), 599611.Google ScholarPubMed
Rodrigue, A. L., Knowles, E. E., Mollon, J., Mathias, S. R., Koenis, M. M., Peralta, J. M., … Glahn, D. C. (2019). Evidence for genetic correlation between human cerebral white matter microstructure and inflammation. Human Brain Mapping, 40(14), 41804191. doi: 10.1002/hbm.24694CrossRefGoogle ScholarPubMed
Russo, D., Martino, M., Magioncalda, P., Inglese, M., Amore, M., & Northoff, G. (2020). Opposing changes in the functional architecture of large-scale networks in bipolar mania and depression. Schizophrenia Bulletin, 46(4), 971980. doi: 10.1093/schbul/sbaa004.CrossRefGoogle ScholarPubMed
Schröder, J., Essig, M., Baudendistel, K., Jahn, T., Gerdsen, I., Stockert, A., … Knopp, M. V. (1999). Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic resonance imaging. Neuroimage, 9(1), 8187. doi: 10.1006/nimg.1998.0387CrossRefGoogle ScholarPubMed
Sharma, A., Satterthwaite, T. D., Vandekar, L., Katchmar, N., Daldal, A., Ruparel, K., … Wolf, D. H. (2016). Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. Psychiatry Research-Neuroimaging, 254, 1825. doi: 10.1016/j.pscychresns.2016.06.003CrossRefGoogle ScholarPubMed
Singh, M. K., Kelley, R. G., Chang, K. D., & Gotlib, I. H. (2015). Intrinsic amygdala functional connectivity in youth with bipolar I disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 54(9), 763770. doi: 10.1016/j.jaac.2015.06.016CrossRefGoogle ScholarPubMed
Son, Y. D., Han, D. H., Kim, S. M., Min, K. J., & Renshaw, P. F. (2017). A functional connectivity comparison between attention deficit hyperactivity disorder and bipolar disorder in medication-naïve adolescents with mood fluctuation and attention problems. Psychiatry Research Neuroimaging, 263, 17. doi: 10.1016/j.pscychresns.2017.02.006CrossRefGoogle ScholarPubMed
Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature Neuroscience, 18(5), 620627. doi: 10.1038/nn.3982CrossRefGoogle ScholarPubMed
Strawbridge, R., Hodsoll, J., Powell, T. R., Hotopf, M., Hatch, S. L., Breen, G., & Cleare, A. J. (2019). Inflammatory profiles of severe treatment-resistant depression. Journal of Affective Disorders, 246, 4251. doi: 10.1016/j.jad.2018.12.037CrossRefGoogle ScholarPubMed
Stuart, M. J., & Baune, B. T. (2014). Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies. Neuroscience and Biobehavioral Reviews, 42, 93115. doi: 10.1016/j.neubiorev.2014.02.001CrossRefGoogle ScholarPubMed
Suarez, E. C., Krishnan, R. R., & Lewis, J. G. (2003). The relation of severity of depressive symptoms to monocyte-associated proinflammatory cytokines and chemokines in apparently healthy men. Psychosomatic Medicine, 65(3), 362368. doi: 10.1097/01.psy.0000035719.79068.2bCrossRefGoogle ScholarPubMed
Tang, J., Liao, Y., Song, M., Gao, J. H., Zhou, B., Tan, C., … Chen, X. (2013). Aberrant default mode functional connectivity in early onset schizophrenia. Plos One, 8(7), e71061. doi: 10.1371/journal.pone.0071061CrossRefGoogle ScholarPubMed
van der Schot, A. C., Vonk, R., Brouwer, R. M., van Baal, G. C. M., Brans, R. G. H., van Haren, N. E. M., … Kahn, R. S. (2010). Genetic and environmental influences on focal brain density in bipolar disorder. Brain, 133, 30803092. doi: 10.1093/brain/awq236CrossRefGoogle ScholarPubMed
Vargas, C., López-Jaramillo, C., & Vieta, E. (2013). A systematic literature review of resting state network – functional MRI in bipolar disorder. Journal of Affective Disorders, 150(3), 727735. doi: 10.1016/j.jad.2013.05.083CrossRefGoogle ScholarPubMed
Vieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R., … Grande, I. (2018). Bipolar disorders. Nature Reviews. Disease Primers, 4, 1800818008. doi: 10.1038/nrdp.2018.8CrossRefGoogle ScholarPubMed
Vizueta, N., Rudie, J. D., Townsend, J. D., Torrisi, S., Moody, T. D., Bookheimer, S. Y., & Altshuler, L. L. (2012). Regional fMRI hypoactivation and altered functional connectivity during emotion processing in nonmedicated depressed patients with bipolar II disorder. American Journal of Psychiatry, 169(8), 831840. doi: 10.1176/appi.ajp.2012.11030349CrossRefGoogle ScholarPubMed
Walker, K. A., Gross, A. L., Moghekar, A. R., Soldan, A., Pettigrew, C., Hou, X., … Walston, J. (2020). Association of peripheral inflammatory markers with connectivity in large-scale functional brain networks of non-demented older adults. Brain Behavior and Immunity, 87, 388396. doi: 10.1016/j.bbi.2020.01.006CrossRefGoogle ScholarPubMed
Wang, Y., Gao, Y., Tang, S., Lu, L., Zhang, L., Bu, X., … Huang, X. (2020b). Large-scale network dysfunction in the acute state compared to the remitted state of bipolar disorder: A meta-analysis of resting-state functional connectivity. Ebiomedicine, 54, 102742. doi: 10.1016/j.ebiom.2020.102742CrossRefGoogle Scholar
Wang, T.-Y., Lee, S.-Y., Chen, S.-L., Chung, Y.-L., Li, C.-L., Chang, Y.-H., … Lu, R.-B. (2016a). The differential levels of inflammatory cytokines and BDNF among Bipolar Spectrum disorders. International Journal of Neuropsychopharmacology, 19(8), pyw012. doi:10.1093/ijnp/pyw012.CrossRefGoogle ScholarPubMed
Wang, L., Zhang, Y., Lin, X., Zhou, H., Du, X., & Dong, G. (2018). Group independent component analysis reveals alternation of right executive control network in internet gaming disorder. CNS Spectrums, 23(5), 300310. doi: 10.1017/s1092852917000360CrossRefGoogle ScholarPubMed
Wang, Y., Zhong, S., Jia, Y., Sun, Y., Wang, B., Liu, T., … Huang, L. (2016b). Disrupted resting-state functional connectivity in nonmedicated bipolar disorder. Radiology, 280(2), 529536. doi: 10.1148/radiol.2016151641CrossRefGoogle ScholarPubMed
Wang, H., Zhu, R., Dai, Z., Tian, S., Shao, J., Wang, X., … Lu, Q. (2020a). Aberrant functional connectivity and graph properties in bipolar II disorder with suicide attempts. Journal of Affective Disorders, 275, 202209. doi: 10.1016/j.jad.2020.07.016CrossRefGoogle ScholarPubMed
Wessa, M., Kanske, P., & Linke, J. (2014). Bipolar disorder: A neural network perspective on a disorder of emotion and motivation. Restorative Neurology and Neuroscience, 32(1), 5162. doi: 10.3233/rnn-139007CrossRefGoogle ScholarPubMed
Wieck, A., Grassi-Oliveira, R., do Prado, C. H., Viola, T. W., Petersen, L. E., Porto, B., … Bauer, M. E. (2016). Toll-like receptor expression and function in type I bipolar disorder. Brain Behavior and Immunity, 54, 110121. doi: 10.1016/j.bbi.2016.01.011CrossRefGoogle ScholarPubMed
Willette, A. A., Coe, C. L., Birdsill, A. C., Bendlin, B. B., Colman, R. J., Alexander, A. L., … Johnson, S. C. (2013). Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. Age, 35(6), 22152227. doi: 10.1007/s11357-013-9518-yCrossRefGoogle ScholarPubMed
Wu, D., Lv, P., Li, F., Zhang, W., Fu, G., Dai, J., … Lui, S. (2019). Association of peripheral cytokine levels with cerebral structural abnormalities in schizophrenia. Brain Research, 1724, 146463. doi:10.1016/j.brainres.2019.146463.CrossRefGoogle ScholarPubMed
Wu, W., Zheng, Y. L., Tian, L. P., Lai, J. B., Hu, C. C., Zhang, P., … Hu, S. H. (2017). Circulating T lymphocyte subsets, cytokines, and immune checkpoint inhibitors in patients with bipolar II or major depression: A preliminary study. Scientific Reports, 7, 40530. doi: 10.1038/srep40530CrossRefGoogle ScholarPubMed
Xiao, Q., Zhong, Y., Lu, D., Gao, W., Jiao, Q., Lu, G., & Su, L. (2013). Altered regional homogeneity in pediatric bipolar disorder during manic state: A resting-state fMRI study. Plos One, 8(3), e57978e57978. doi: 10.1371/journal.pone.0057978CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Zhao, L., Wang, Y., Jia, Y., Zhong, S., Sun, Y., Qi, Z., … Huang, L. (2017). Altered interhemispheric functional connectivity in remitted bipolar disorder: A resting state fMRI study. Scientific Reports, 7, 4698. doi:10.1038/s41598-017-04937-6.CrossRefGoogle ScholarPubMed
Zhong, Y., Wang, C., Gao, W., Xiao, Q., Lu, D., Jiao, Q., … Lu, G. (2019). Aberrant resting-state functional connectivity in the default mode network in pediatric bipolar disorder patients with and without psychotic symptoms. Neuroscience Bulletin, 35(4), 581590. doi: 10.1007/s12264-018-0315-6CrossRefGoogle ScholarPubMed