Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-vbn2q Total loading time: 0.335 Render date: 2021-08-02T11:16:32.313Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol

Published online by Cambridge University Press:  27 January 2010

R. Hurlemann
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
H. Walter
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Division of Medical Psychology, University of Bonn, Bonn, Germany
A. K. Rehme
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
J. Kukolja
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
S. C. Santoro
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
C. Schmidt
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
K. Schnell
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Division of Medical Psychology, University of Bonn, Bonn, Germany
F. Musshoff
Affiliation:
Institute of Legal Medicine, University of Bonn, Bonn, Germany
C. Keysers
Affiliation:
BCN NeuroImaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
W. Maier
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany
K. M. Kendrick
Affiliation:
Cognitive and Behavioral Neuroscience, The Babraham Institute, Babraham, Cambridge, UK
O. A. Onur
Affiliation:
Department of Psychiatry, University of Bonn, Bonn, Germany Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
Corresponding
E-mail address:

Abstract

Background

Animal models of anxiety disorders emphasize the crucial role of locus ceruleus–noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy of a β-noradrenergic receptor blockade with propranolol in the alleviation of anxiety symptoms and the secondary prevention of post traumatic stress disorder, preclinical evidence for a β-noradrenergic modulation of BLA activity in humans is missing.

Method

We combined functional magnetic resonance imaging in healthy volunteers with probabilistic mapping of intra-amygdalar responses to fearful, neutral and happy facial expressions to test the hypothesis that a β-noradrenergic receptor blockade with propranolol would inactivate the BLA.

Results

Consistent with our a priori hypothesis, propranolol diminished BLA responses to facial expressions, independent of their emotional valence. The absence of activity changes in probabilistically defined visual control regions underscores the specific action of propranolol in the BLA.

Conclusions

Our findings provide the missing link between the anxiolytic potential of propranolol and the biological basis of β-noradrenergic activation in the human BLA as a key target for the pharmacological inhibition of anxiety neurocircuitry. Moreover, our findings add to emerging evidence that NE modulates both the reactivity (sensitivity) and the operating characteristics (specificity) of the BLA via β-noradrenergic receptors.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, ED, Jacobs, BL (1987). Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. Journal of Neuroscience 7, 28372843.CrossRefGoogle ScholarPubMed
Adolphs, R, Spezio, M (2006). Role of the amygdala in processing visual social stimuli. Progress in Brain Research 156, 363378.CrossRefGoogle ScholarPubMed
Alexander, JK, Hillier, A, Smith, RM, Tivarus, ME, Beversdorf, DQ (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience 19, 468478.CrossRefGoogle ScholarPubMed
Amat, J, Baratta, MV, Paul, E, Bland, ST, Watkins, LR, Maier, SF (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience 8, 365371.CrossRefGoogle ScholarPubMed
Amunts, K, Kedo, O, Kindler, M, Pieperhoff, P, Mohlberg, H, Shah, NJ, Habel, U, Schneider, S, Zilles, K (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anatomy and Embryology (Berlin) 210, 343352.CrossRefGoogle ScholarPubMed
APA (2000). Diagnostic and Statistical Manual of Mental Disorders (4th edn, text revision). American Psychiatric Association: Washington, DC.Google Scholar
Arce, E, Simmons, AN, Lovero, KL, Stein, MB, Paulus, MP (2008). Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology (Berlin) 196, 661672.CrossRefGoogle ScholarPubMed
Asan, E (1998). The catecholaminergic innervation of the rat amygdala. Advances in Anatomy, Embryology and Cell Biology 142, L1L118.CrossRefGoogle ScholarPubMed
Ashburner, J, Friston, KJ (2003). Rigid body registration. In Human Brain Function, 2nd edn. (ed. Frackowiak, R. S., Friston, K. J., Frith, C. D., Dolan, R. J., Price, C. J., Ashburner, J., Penny, W. D., Zeki, S.), pp. 635655. Academic Press: London, UK.Google Scholar
Ashburner, J, Friston, KJ (2005). Unified segmentation. Neuroimage 26, 839851.CrossRefGoogle ScholarPubMed
Aston-Jones, G, Cohen, JD (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review – Neuroscience 28, 403540.CrossRefGoogle ScholarPubMed
Berridge, CW, Waterhouse, BD (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research. Brain Research Reviews 42, 3384.CrossRefGoogle Scholar
Bonn, JA, Turner, P (1971). D-Propranolol and anxiety. Lancet 1, 13551356.CrossRefGoogle ScholarPubMed
Brantigan, CO, Brantigan, TA, Joseph, N (1982). Effect of beta-blockade and beta-stimulation on stage fright. American Journal of Medicine 72, 8894.CrossRefGoogle ScholarPubMed
Bremner, JD, Krystal, JH, Southwick, SM, Charney, DS (1996 a). Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse 23, 2838.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Bremner, JD, Krystal, JH, Southwick, SM, Charney, DS (1996 b). Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse 23, 3951.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Brewer, C (1972). Beneficial effect of beta-adrenergic blockade on ‘exam nerves’. Lancet 2, 435.CrossRefGoogle Scholar
Buffalari, DM, Grace, AA (2007). Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation. Journal of Neuroscience 27, 1235812366.CrossRefGoogle ScholarPubMed
Cahill, L, Prins, B, Weber, M, McGaugh, JL (1994). Beta-adrenergic activation and memory for emotional events. Nature 371, 702704.CrossRefGoogle ScholarPubMed
Charney, DS, Woods, SW, Nagy, LM, Southwick, SM, Krystal, JH, Heninger, GR (1990). Noradrenergic function in panic disorder. Journal of Clinical Psychiatry 51 (Suppl. A), 5–11.Google ScholarPubMed
Collins, DL, Neelin, P, Peters, TM, Evans, AC (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography 18, 192205.CrossRefGoogle ScholarPubMed
Debiec, J, Ledoux, JE (2004). Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267272.CrossRefGoogle Scholar
Debiec, J, LeDoux, JE (2006). Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD. Annals of the New York Academy of Sciences 1071, 521524.CrossRefGoogle ScholarPubMed
Eickhoff, SB, Heim, S, Zilles, K, Amunts, K (2006). Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32, 570582.CrossRefGoogle ScholarPubMed
Eickhoff, SB, Paus, T, Caspers, S, Grosbras, MH, Evans, A, Zilles, K, Amunts, K (2007). Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36, 511521.CrossRefGoogle ScholarPubMed
Eickhoff, SB, Stephan, KE, Mohlberg, H, Grefkes, C, Fink, GR, Amunts, K, Zilles, K (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 13251335.CrossRefGoogle ScholarPubMed
Etkin, A, Wager, TD (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry 164, 14761488.CrossRefGoogle ScholarPubMed
Evans, AC, Kamber, M, Collins, DL, MacDonald, D (1994). An MRI based probabilistic atlas of neuroanatomy. In Magnetic Resonance Scanning and Epilepsy (ed. Shorvon, S., Fish, D., Andermann, F., Bydder, G. M.), pp. 263274. Plenum Press: New York.CrossRefGoogle Scholar
Evans, AC, Marrett, S, Neelin, P, Collins, L, Worsley, K, Dai, W, Milot, S, Meyer, E, Bub, D (1992). Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1, 4353.CrossRefGoogle ScholarPubMed
Fagerstrom, KO, Hugdahl, K, Lundstrom, N (1985). Effect of beta-receptor blockade on anxiety with reference to the three-systems model of phobic behavior. Neuropsychobiology 13, 187193.CrossRefGoogle ScholarPubMed
Faigel, HC (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics 30, 441445.CrossRefGoogle ScholarPubMed
Fitzgerald, DA, Angstadt, M, Jelsone, LM, Nathan, PJ, Phan, KL (2006). Beyond threat: amygdala reactivity across multiple expressions of facial affect. Neuroimage 30, 14411448.CrossRefGoogle ScholarPubMed
Friston, KJ, Holmes, A, Worsley, KJ, Poline, JB, Frith, CD, Frackowiak, RSJ (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2, 189210.CrossRefGoogle Scholar
Galvez, R, Mesches, MH, McGaugh, JL (1996). Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiology of Learning and Memory 66, 253257.CrossRefGoogle ScholarPubMed
Granville-Grossman, KL, Turner, P (1966). The effect of propranolol on anxiety. Lancet 1, 788790.CrossRefGoogle ScholarPubMed
Grillon, C, Cordova, J, Morgan, CA, Charney, DS, Davis, M (2004). Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans. Psychopharmacology (Berlin) 175, 342352.CrossRefGoogle ScholarPubMed
Hasson, U, Nir, Y, Levy, I, Fuhrmann, G, Malach, R (2004). Intersubject synchronization of cortical activity during natural vision. Science 303, 16341640.CrossRefGoogle ScholarPubMed
Hatfield, T, McGaugh, JL (1999). Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiology of Learning and Memory 71, 232239.CrossRefGoogle Scholar
Hatfield, T, Spanis, C, McGaugh, JL (1999). Response of amygdalar norepinephrine to footshock and GABAergic drugs using in vivo microdialysis and HPLC. Brain Research 835, 340345.CrossRefGoogle ScholarPubMed
Hayes, PE, Schulz, SC (1987). Beta-blockers in anxiety disorders. Journal of Affective Disorders 13, 119130.CrossRefGoogle ScholarPubMed
Helmstaedter, C, Lendt, M, Lux, S (2001). Verbaler Lern- und Merkfähigkeitstest (VLMT). Hogrefe: Göttingen.Google Scholar
Holmes, CJ, Hoge, R, Collins, L, Woods, R, Toga, AW, Evans, AC (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography 22, 324333.CrossRefGoogle ScholarPubMed
Hurlemann, R (2008). Noradrenergic-glucococorticoid mechanisms in emotion-induced amnesia: from adaptation to disease. Psychopharmacology (Berlin) 197, 1323.CrossRefGoogle ScholarPubMed
Hurlemann, R, Hawellek, B, Matusch, A, Kolsch, H, Wollersen, H, Madea, B, Vogeley, K, Maier, W, Dolan, RJ (2005). Noradrenergic modulation of emotion-induced forgetting and remembering. Journal of Neuroscience 25, 63436349.CrossRefGoogle ScholarPubMed
Hurlemann, R, Rehme, AK, Diessel, M, Kukolja, J, Maier, W, Walter, H, Cohen, MX (2008). Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. Journal of Neuroscience Methods 172, 1320.CrossRefGoogle ScholarPubMed
Ikegaya, Y, Nakanishi, K, Saito, H, Abe, K (1997). Amygdala beta-noradrenergic influence on hippocampal long-term potentiation in vivo. Neuroreport 8, 31433146.CrossRefGoogle ScholarPubMed
Itoi, K (2008). Ablation of the central noradrenergic neurons for unraveling their roles in stress and anxiety. Annals of the New York Academy of Sciences 1129, 4754.CrossRefGoogle ScholarPubMed
Kessler, RC, Chiu, WT, Demler, O, Merikangas, KR, Walters, EE (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry 62, 617627.CrossRefGoogle ScholarPubMed
Kindt, M, Soeter, M, Vervliet, B (2009). Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience 12, 256258.CrossRefGoogle ScholarPubMed
Kornischka, J, Cordes, J, Agelink, MW (2007). 40 years beta-adrenoceptor blockers in psychiatry. Fortschritte der Neurologie-Psychiatrie 75, 199210.CrossRefGoogle Scholar
Kukolja, J, Schlaepfer, TE, Keysers, C, Klingmuller, D, Maier, W, Fink, GR, Hurlemann, R (2008). Modeling a negative response bias in the human amygdala by noradrenergic-glucocorticoid interactions. Journal of Neuroscience 28, 1286812876.CrossRefGoogle ScholarPubMed
Kuraoka, K, Nakamura, K (2007). Responses of single neurons in monkey amygdala to facial and vocal emotions. Journal of Neurophysiology 97, 13791387.CrossRefGoogle ScholarPubMed
LaBar, KS, Crupain, MJ, Voyvodic, JT, McCarthy, G (2003). Dynamic perception of facial affect and identity in the human brain. Cerebral Cortex 13, 10231033.CrossRefGoogle ScholarPubMed
Lehrl, S (1995). Mehrfachwahl-Wortschatz-Test (MWT-B). Erlangen: Straube.Google Scholar
Liang, KC, Juler, RG, McGaugh, JL (1986). Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Research 368, 125133.CrossRefGoogle ScholarPubMed
Liu, HH, Milgrom, P, Fiset, L (1991). Effect of a beta-adrenergic blocking agent on dental anxiety. Journal of Dental Research 70, 13061308.CrossRefGoogle ScholarPubMed
Morilak, DA, Barrera, G, Echevarria, DJ, Garcia, AS, Hernandez, A, Ma, S, Petre, CO (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuropsychopharmacology and Biological Psychiatry 29, 12141224.CrossRefGoogle ScholarPubMed
Murphy, SE, Norbury, R, O'Sullivan, U, Cowen, PJ, Harmer, CJ (2009) Effect of a single dose of citalopram on amygdala response to emotional faces. British Journal of Psychiatry 194, 535540.CrossRefGoogle ScholarPubMed
Onur, OA, Walter, H, Schlaepfer, TE, Rehme, AK, Schmidt, C, Keysers, C, Maier, W, Hurlemann, R (2009). Noradrenergic enhancement of amygdala responses to fear. Social Cognitive and Affective Neuroscience 4, 119126.CrossRefGoogle ScholarPubMed
Paulus, MP, Feinstein, JS, Castillo, G, Simmons, AN, Stein, MB (2005). Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Archives of General Psychiatry 62, 282288.CrossRefGoogle ScholarPubMed
Pitkanen, A, Pikkarainen, M, Nurminen, N, Ylinen, A (2000). Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Annals of the New York Academy of Sciences 911, 369391.CrossRefGoogle ScholarPubMed
Pitman, RK, Sanders, KM, Zusman, RM, Healy, AR, Cheema, F, Lasko, NB, Cahill, L, Orr, SP (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry 51, 189192.CrossRefGoogle ScholarPubMed
Przybyslawski, J, Roullet, P, Sara, SJ (1999). Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. Journal of Neuroscience 19, 66236628.CrossRefGoogle ScholarPubMed
Rainbow, TC, Parsons, B, Wolfe, BB (1984). Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proceedings of the National Academy of Sciences USA 81, 15851589.CrossRefGoogle ScholarPubMed
Raitan, RM (1958). Validity of the trail making test as an indication of organic brain damage. Perceptual and Motor Skills 8, 271276.CrossRefGoogle Scholar
Reinders, AA, Gläscher, J, de Jong, JR, Willemsen, AT, den Boer, JA, Büchel, C (2006). Detecting fearful and neutral faces: BOLD latency differences in amygdala-hippocampal junction. Neuroimage 33, 805814.CrossRefGoogle ScholarPubMed
Quirk, GJ, Gehlert, DR (2003). Inhibition of the amygdala: key to pathological states? Annals of the New York Academy of Sciences 985, 263272.CrossRefGoogle ScholarPubMed
Ravaris, CL, Friedman, MJ, Hauri, PJ, McHugo, GJ (1991). A controlled study of alprazolam and propranolol in panic-disordered and agoraphobic outpatients. Journal of Clinical Psychopharmacology 11, 344350.CrossRefGoogle ScholarPubMed
Redmond, DE Jr., Huang, YH, Snyder, DR, Maas, JW (1976). Behavioral effects of stimulation of the nucleus locus coeruleus in the stump-tailed monkey Macaca arctoides. Brain Research 116, 502510.CrossRefGoogle ScholarPubMed
Rey, A (1941). L'examen psychologique dans les cas d'encéphalopathie traumatique. Archiv fur Psychologie 30, 286340.Google Scholar
Rodriguez-Romaguera, J, Sotres-Bayon, F, Mueller, D, Quirk, GJ (2009). Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biological Psychiatry 65, 887892.CrossRefGoogle ScholarPubMed
Scoville, WB, Milner, B (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry 20, 1121.CrossRefGoogle ScholarPubMed
Southwick, SM, Krystal, JH, Bremner, JD, Morgan, CA 3rd, Nicolaou, AL, Nagy, LM, Johnson, DR, Heninger, GR, Charney, DS (1997). Noradrenergic and serotonergic function in posttraumatic stress disorder. Archives of General Psychiatry 54, 749758.CrossRefGoogle ScholarPubMed
Southwick, SM, Krystal, JH, Morgan, CA, Johnson, D, Nagy, LM, Nicolaou, A, Heninger, GR, Charney, DS (1993). Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry 50, 266274.CrossRefGoogle ScholarPubMed
Stone, WN, Gleser, GC, Gottschalk, LA (1973). Anxiety and beta-adrenergic blockade. Archives of General Psychiatry 29, 620622.CrossRefGoogle ScholarPubMed
Strange, BA, Dolan, RJ (2004). Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences USA 101, 1145411458.CrossRefGoogle ScholarPubMed
Strange, BA, Dolan, RJ (2007). Beta-adrenergic modulation of oddball responses in humans. Behavioral and Brain Functions 3, 29.CrossRefGoogle ScholarPubMed
Strange, BA, Hurlemann, R, Dolan, RJ (2003). An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proceedings of the National Academy of Sciences USA 100, 1362613631.CrossRefGoogle ScholarPubMed
Sved, AF, Cano, G, Passerin, AM, Rabin, B (2002). The locus coeruleus, Barrington's nucleus, and neural circuits of stress. Physiology and Behavior 77, 737742.CrossRefGoogle ScholarPubMed
Tyrer, P (1988). Current status of beta-blocking drugs in the treatment of anxiety disorders. Drugs 36, 773783.CrossRefGoogle ScholarPubMed
van Bockstaele, EJ, Bajic, D, Proudfit, H, Valentino, RJ (2001). Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiology and Behavior 73, 273283.CrossRefGoogle ScholarPubMed
van der Gaag, C, Minderaa, RB, Keysers, C (2007). The BOLD signal in the amygdala does not differentiate between dynamic facial expressions. Social Cognitive and Affective Neuroscience 2, 93–103.CrossRefGoogle Scholar
van Stegeren, AH, Everaerd, W, Cahill, L, McGaugh, JL, Gooren, LJ (1998). Memory for emotional events: differential effects of centrally versus peripherally acting beta-blocking agents. Psychopharmacology (Berlin) 138, 305310.CrossRefGoogle ScholarPubMed
van Stegeren, AH, Goekoop, R, Everaerd, W, Scheltens, P, Barkhof, F, Kuijer, JP, Rombouts, SA (2005). Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. Neuroimage 24, 898909.CrossRefGoogle ScholarPubMed
van Stegeren, AH, Wolf, OT, Everaerd, W, Rombouts, SA (2008). Interaction of endogenous cortisol and noradrenaline in the human amygdala. Progress in Brain Research 167, 263268.CrossRefGoogle ScholarPubMed
Vaiva, G, Ducrocq, F, Jezequel, K, Averland, B, Lestavel, P, Brunet, A, Marmar, CR (2003). Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biological Psychiatry 54, 947949.CrossRefGoogle ScholarPubMed
Wood, AJ, Carr, K, Vestal, RE, Belcher, S, Wilkinson, GR, Shand, DG (1978). Direct measurement of propranolol bioavailability during accumulation to steady-state. British Journal of Clinical Pharmacology 6, 345350.CrossRefGoogle ScholarPubMed
Woodward, DJ, Moises, HC, Waterhouse, BD, Yeh, HH, Cheun, JE (1991). Modulatory actions of norepinephrine on neural circuits. Advances in Experimental Medicine and Biology 287, 193208.CrossRefGoogle ScholarPubMed
Young, AW, Perret, DI, Calder, A, Sprengelmeyer, R, Ekman, P (2002). Facial Expressions of Emotion: Stimuli and Test. Harcourt Assessment: San Antonio, Texas.Google Scholar
Young, MP, Scannell, JW, Burns, GA, Blakemore, C (1994). Analysis of connectivity: neural systems in the cerebral cortex. Reviews in the Neurosciences 5, 227249.CrossRefGoogle ScholarPubMed
72
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *