Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.41 Render date: 2021-05-15T12:26:51.182Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Genetics of eating disorders in the genome-wide era

Published online by Cambridge University Press:  15 February 2021

Hunna J. Watson
Affiliation:
Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Australia School of Psychology, Curtin University, Perth, Australia
Alish B. Palmos
Affiliation:
Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
Avina Hunjan
Affiliation:
Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley National Health Service (NHS) Trust, London, UK
Jessica H. Baker
Affiliation:
Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Zeynep Yilmaz
Affiliation:
Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Helena L. Davies
Affiliation:
Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
Corresponding
E-mail address:

Abstract

Enabled by advances in high throughput genomic sequencing and an unprecedented level of global data sharing, molecular genetic research is beginning to unlock the biological basis of eating disorders. This invited review provides an overview of genetic discoveries in eating disorders in the genome-wide era. To date, five genome-wide association studies on eating disorders have been conducted – all on anorexia nervosa (AN). For AN, several risk loci have been detected, and ~11–17% of the heritability has been accounted for by common genetic variants. There is extensive genetic overlap between AN and psychological traits, especially obsessive-compulsive disorder, and intriguingly, with metabolic phenotypes even after adjusting for body mass index (BMI) risk variants. Furthermore, genetic risk variants predisposing to lower BMI may be causal risk factors for AN. Causal genes and biological pathways of eating disorders have yet to be elucidated and will require greater sample sizes and statistical power, and functional follow-up studies. Several studies are underway to recruit individuals with bulimia nervosa and binge-eating disorder to enable further genome-wide studies. Data collections and research labs focused on the genetics of eating disorders have joined together in a global effort with the Psychiatric Genomics Consortium. Molecular genetics research in the genome-wide era is improving knowledge about the biology behind the established heritability of eating disorders. This has the potential to offer new hope for understanding eating disorder etiology and for overcoming the therapeutic challenges that confront the eating disorder field.

Type
Special Issue Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Abdulkadir, M., Herle, M., De Stavola, B. L., Hübel, C., Santos Ferreira, D. L., Loos, R. J. F., … Micali, N. (2020). Polygenic score for body mass index is associated with disordered eating in a general population cohort. Journal of Clinical Medicine, 9, 1187.CrossRefGoogle Scholar
Agras, W. S. (1997). Pharmacotherapy of bulimia nervosa and binge eating disorder: Longer-term outcomes. Psychopharmacology Bulletin, 33, 433436.Google ScholarPubMed
American Psychiatric Association (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Arcelus, J., Mitchell, A. J., Wales, J., & Nielsen, S. (2011). Mortality rates in patients with anorexia nervosa and other eating disorders: A meta-analysis of 36 studies. Archives of General Psychiatry, 68, 724731.CrossRefGoogle ScholarPubMed
Awofala, A. A., Ogundele, O. E., Adekoya, K. O., & Osundina, S. A. (2019). Adiponectin and human eating behaviour: A Mendelian randomization study. Egyptian Journal of Medical Human Genetics, 20, 17.CrossRefGoogle Scholar
Baker, J., Kim, Y., Crowley, J., Trace, S., Brownley, K., Pisetsky, D., & Bulik, C. (2019). SU44 – Correlation between gene expression change and hormone change during refeeding in anorexia nervosa. European Neuropsychopharmacology, 29, S911.CrossRefGoogle Scholar
Baker, J. H., Mitchell, K. S., Neale, M. C., & Kendler, K. S. (2010). Eating disorder symptomatology and substance use disorders: Prevalence and shared risk in a population based twin sample. International Journal of Eating Disorders, 43, 648658.CrossRefGoogle Scholar
Beck, A. T. (2019). A 60-year evolution of cognitive theory and therapy. Perspectives on Psychologica Science, 14, 1620.CrossRefGoogle ScholarPubMed
Bergen, A., Shih, P.-A. B., Zeeland, A. S.-V., Carland, T., Bansal, V., Magistretti, P., … Schork, N. (2019). M42 – Whole genome sequence analysis of a cousin pair with restricting anorexia nervosa. European Neuropsychopharmacology, 29, S977S978.CrossRefGoogle Scholar
Bienvenu, T., Lebrun, N., Clarke, J., Duriez, P., Gorwood, P., & Ramoz, N. (2019). Exome sequencing in a familial form of anorexia nervosa supports multigenic etiology. Journal of Neural Transmission, 126, 15051511.CrossRefGoogle Scholar
Booij, L., Casey, K. F., Antunes, J. M., Szyf, M., Joober, R., Israël, M., & Steiger, H. (2015). DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study. International Journal of Eating Disorders, 48, 874882.CrossRefGoogle ScholarPubMed
Boraska, V., Franklin, C. S., Floyd, J. A., Thornton, L. M., Huckins, L. M., Southam, L., … Bulik, C. M. (2014). A genome-wide association study of anorexia nervosa. Molecular Psychiatry, 19, 10851094.CrossRefGoogle ScholarPubMed
Bulik, C. M., Blake, L., & Austin, J. (2019). Genetics of eating disorders: What the clinician needs to know. Psychiatric Clinics of North America, 42, 5973.CrossRefGoogle Scholar
Bulik, C. M., Butner, J. E., Tregarthen, J., Thornton, L. M., Flatt, R. E., Smith, T., … Deboeck, P. R. (2020). The Binge Eating Genetics Initiative (BEGIN): Study protocol. BMC Psychiatry, 20, 19.CrossRefGoogle ScholarPubMed
Bulik, C. M., Sullivan, P. F., & Kendler, K. S. (1998). Heritability of binge-eating and broadly defined bulimia nervosa. Biological Psychiatry, 44, 1210–1208.CrossRefGoogle ScholarPubMed
Bulik, C. M., Sullivan, P. F., Wade, T. D., & Kendler, K. S. (2000). Twin studies of eating disorders: A review. International Journal of Eating Disorders, 27, 120.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Bulik, C., Thornton, L., Root, T., Pisetsky, E., Lichtenstein, P., & Pedersen, N. (2010). Understanding the relation between anorexia nervosa and bulimia nervosa in a Swedish national twin sample. Biological Psychiatry, 67, 7177.CrossRefGoogle Scholar
Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M., … Theodoratou, E. (2020). Guidelines for performing Mendelian randomization investigations. Wellcome Open Research, 4, 186.CrossRefGoogle ScholarPubMed
Burgess, S., Davies, N. M., Thompson, S. G., & Consortium, E. P.-I. (2014). Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology (Cambridge, Mass.), 25, 877885.CrossRefGoogle ScholarPubMed
Cederlof, M., Thornton, L. M., Baker, J., Lichtenstein, P., Larsson, H., Ruck, C., … Mataix-Cols, D. (2015). Etiological overlap between obsessive-compulsive disorder and anorexia nervosa: A longitudinal cohort, multigenerational family and twin study. World Psychiatry, 14, 333338.CrossRefGoogle ScholarPubMed
Chang, X., Qu, H., Liu, Y., Glessner, J., Hou, C., Wang, F., … Hakonarson, H. (2019). Microduplications at the 15q11.2 BP1-BP2 locus are enriched in patients with anorexia nervosa. Journal of Psychiatric Research, 113, 3438.CrossRefGoogle ScholarPubMed
Cheng, B., Qi, X., Liang, C., Zhang, L., Ma, M., Li, P., … Zhang, F. (2020). Integrative genomic enrichment analysis identified the brain regions and development stages related to anorexia nervosa and obsessive-compulsive disorder. Cerebral Cortex, 30, 64816489.CrossRefGoogle ScholarPubMed
Coll, A. P., Farooqi, I. S., & O'Rahilly, S. (2007). The hormonal control of food intake. Cell, 129, 251262.CrossRefGoogle ScholarPubMed
Cross-Disorder Phenotype Group of the Psychiatric GWAS Consortium, Craddock, N., Kendler, K., Neale, M., Nurnberger, J., Purcell, S., … Thapar, A. (2009). Dissecting the phenotype in genome-wide association studies of psychiatric illness. British Journal of Psychiatry, 195, 9799.Google ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet (London, England), 381, 13711379.CrossRefGoogle Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium (2019). Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell, 179, 14691482, e1411.CrossRefGoogle Scholar
Cui, H., Moore, J., Ashimi, S. S., Mason, B. L., Drawbridge, J. N., Han, S., … Lutter, M. (2013). Eating disorder predisposition is associated with ESRRA and HDAC4 mutations. Journal of Clinical Investigation, 123, 47064713.CrossRefGoogle ScholarPubMed
Davey Smith, G., & Ebrahim, S. (2003). ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122.CrossRefGoogle Scholar
Dellava, J. E., Thornton, L. M., Lichtenstein, P., Pedersen, N. L., & Bulik, C. M. (2011). Impact of broadening definitions of anorexia nervosa on sample characteristics. Journal of Psychiatric Research, 45, 691698.CrossRefGoogle ScholarPubMed
Duncan, L., Yilmaz, Z., Gaspar, H., Walters, R., Goldstein, J., Anttila, V., … Bulik, C. M. (2017). Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. American Journal of Psychiatry, 174, 850858.CrossRefGoogle ScholarPubMed
Fairburn, C. (1981). A cognitive behavioural approach to the treatment of bulimia. Psychological Medicine, 11, 707711.CrossRefGoogle ScholarPubMed
Fairburn, C. G., Jones, R., Peveler, R. C., Carr, S. J., Solomon, R. A., O'Connor, M. E., … Hope, R. A. (1991). Three psychological treatments for bulimia nervosa. A comparative trial. Archives of General Psychiatry, 48, 463469.CrossRefGoogle ScholarPubMed
Frieling, H., Gozner, A., Römer, K. D., Lenz, B., Bönsch, D., Wilhelm, J., … Bleich, S. (2007). Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Molecular Psychiatry, 12, 229230.CrossRefGoogle ScholarPubMed
Gaspar, H. A., & Breen, G. (2017). Drug enrichment and discovery from schizophrenia genome-wide association results: An analysis and visualisation approach. Scientific Reports, 7, 12460.CrossRefGoogle ScholarPubMed
Hilbert, A., Bishop, M. E., Stein, R. I., Tanofsky-Kraff, M., Swenson, A. K., Welch, R. R., & Wilfley, D. E. (2012). Long-term efficacy of psychological treatments for binge eating disorder. British Journal of Psychiatry, 200, 232237.CrossRefGoogle ScholarPubMed
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19, 371384.CrossRefGoogle ScholarPubMed
Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22, 343352.CrossRefGoogle ScholarPubMed
Howard, D., Negraes, P., Voineskos, A. N., Kaplan, A. S., Muotri, A. R., Duvvuri, V., & French, L. (2020). Molecular neuroanatomy of anorexia nervosa. Scientific Reports, 10, 11411.CrossRefGoogle ScholarPubMed
Hübel, C., Marzi, S. J., Breen, G., & Bulik, C. M. (2019). Epigenetics in eating disorders: A systematic review. Molecular Psychiatry, 24, 901915.CrossRefGoogle ScholarPubMed
Hudson, J. I., Hiripi, E., Pope, H. G. Jr., & Kessler, R. C. (2007). The prevalence and correlates of eating disorders in the national comorbidity survey replication. Biological Psychiatry, 61, 348358.CrossRefGoogle ScholarPubMed
Hudson, J. I., McElroy, S. L., Ferreira-Cornwell, M. C., Radewonuk, J., & Gasior, M. (2017). Efficacy of lisdexamfetamine in adults with moderate to severe binge-eating disorder: A randomized clinical trial. JAMA Psychiatry, 74, 903910.CrossRefGoogle ScholarPubMed
Iacobellis, G., & Barbaro, G. (2019). Targeting the organ-specific adiposity. Eating and Weight Disorders, 24, 12.CrossRefGoogle ScholarPubMed
Javaras, K. N., Laird, N. M., Reichborn-Kjennerud, T., Bulik, C. M., Pope, H. G. Jr., & Hudson, J. I. (2008). Familiality and heritability of binge eating disorder: Results of a case-control family study and a twin study. International Journal of Eating Disorders, 41, 174179.CrossRefGoogle Scholar
Kendler, K. S., Walters, E. E., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1995). The structure of the genetic and environmental risk factors for six major psychiatric disorders in women: Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression and alcoholism. Archives of General Psychiatry, 52, 374383.CrossRefGoogle ScholarPubMed
Kesselmeier, M., Pütter, C., Volckmar, A. L., Baurecht, H., Grallert, H., Illig, T., … Hinney, A. (2018). High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation. World Journal of Biological Psychiatry, 19, 187199.CrossRefGoogle ScholarPubMed
Kim, Y., Trace, S. E., Crowley, J. J., Brownley, K. A., Hamer, R. M., Pisetsky, D. S., … Bulik, C. M. (2013). Assessment of gene expression in peripheral blood using RNAseq before and after weight restoration in anorexia nervosa. Psychiatry Research, 210, 287293.CrossRefGoogle ScholarPubMed
King, E. A., Davis, J. W., & Degner, J. F. (2019). Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genetics, 15, e1008489.CrossRefGoogle ScholarPubMed
Klump, K. L., Miller, K. B., Keel, P. K., McGue, M., & Iacono, W. G. (2001). Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychological Medicine, 31, 737740.CrossRefGoogle Scholar
Kortegaard, L. S., Hoerder, K., Joergensen, J., Gillberg, C., & Kyvik, K. O. (2001). A preliminary population-based twin study of self-reported eating disorder. Psychological Medicine, 31, 361365.CrossRefGoogle ScholarPubMed
Kubota, T., Miyake, K., & Hirasawa, T. (2012). Epigenetic understanding of gene-environment interactions in psychiatric disorders: A new concept of clinical genetics. Clinical Epigenetics, 4, 1.CrossRefGoogle ScholarPubMed
Lock, J., & Le Grange, D. (2013). Treatment manual for anorexia nervosa: A family-based approach (2nd ed.). New York: Guilford Press.Google Scholar
Lock, J., & Le Grange, D. (2019). Family-based treatment: Where are we and where should we be going to improve recovery in child and adolescent eating disorders. International Journal of Eating Disorders, 52, 481487.CrossRefGoogle ScholarPubMed
Lombardi, L., Blanchet, C., Poirier, K., Lebrun, N., Ramoz, N., Rose Moro, M., … Bienvenu, T. (2019). Anorexia nervosa is associated with neuronatin variants. Psychiatric Genetics, 29, 103110.CrossRefGoogle ScholarPubMed
Lutter, M., Bahl, E., Hannah, C., Hofammann, D., Acevedo, S., Cui, H., … Michaelson, J. J. (2017). Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors. PLoS One, 12, e0181556.CrossRefGoogle ScholarPubMed
McIntosh, A. M., Sullivan, P. F., & Lewis, C. M. (2019). Uncovering the genetic architecture of major depression. Neuron, 102, 91103.CrossRefGoogle ScholarPubMed
Mitchell, K. S., Neale, M. C., Bulik, C. M., Aggen, S. H., Kendler, K. S., & Mazzeo, S. E. (2010). Binge eating disorder: A symptom-level investigation of genetic and environmental influences on liability. Psychological Medicine, 40, 18991906.CrossRefGoogle ScholarPubMed
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 2338.CrossRefGoogle ScholarPubMed
Mullins, N., Power, R. A., Fisher, H. L., Hanscombe, K. B., Euesden, J., Iniesta, R., … Lewis, C. M. (2016). Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychological Medicine, 46, 759770.CrossRefGoogle ScholarPubMed
Munn-Chernoff, M. A., & Baker, J. H. (2016). A primer on the genetics of comorbid eating disorders and substance use disorders. European Eating Disorders Review, 24, 91100.CrossRefGoogle ScholarPubMed
Munn-Chernoff, M. A., Johnson, E. C., Chou, Y. L., Coleman, J. R. I., Thornton, L. M., Walters, R. K., … Agrawal, A. (2021). Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies. Addiction Biology, 26, e12880.CrossRefGoogle ScholarPubMed
Nagata, J. M., Braudt, D. B., Domingue, B. W., Bibbins-Domingo, K., Garber, A. K., Griffiths, S., & Murray, S. B. (2019). Genetic risk, body mass index, and weight control behaviors: Unlocking the triad. International Journal of Eating Disorders, 52, 825833.CrossRefGoogle ScholarPubMed
Nakabayashi, K., Komaki, G., Tajima, A., Ando, T., Ishikawa, M., Nomoto, J., … Shirasawa, S. (2009). Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. Journal of Human Genetics, 54, 531537.CrossRefGoogle ScholarPubMed
Negraes, P. D., Cugola, F. R., Herai, R. H., Trujillo, C. A., Cristino, A. S., Chailangkarn, T., … Duvvuri, V. (2017). Modeling anorexia nervosa: Transcriptional insights from human iPSC-derived neurons. Translational Psychiatry, 7, e1060.CrossRefGoogle ScholarPubMed
Nelson, M. R., Tipney, H., Painter, J. L., Shen, J., Nicoletti, P., Shen, Y., … Sanseau, P. (2015). The support of human genetic evidence for approved drug indications. Nature Genetics, 47, 856860.CrossRefGoogle ScholarPubMed
Preti, A., Girolamo, G., Vilagut, G., Alonso, J., Graaf, R., Bruffaerts, R., … Morosini, P. (2009). The epidemiology of eating disorders in six European countries: Results of the ESEMeD-WMH project. Journal of Psychiatric Research, 43, 11251132.CrossRefGoogle ScholarPubMed
Ramoz, N., Guillaume, S., Courtet, P., & Gorwood, P. (2017). Epigenetics in the remission of anorexia nervosa: A follow-up study of whole-genome methylation profiles. European Psychiatry, 41, S102.CrossRefGoogle Scholar
Reed, Z. E., Micali, N., Bulik, C. M., Davey Smith, G., & Wade, K. H. (2017). Assessing the causal role of adiposity on disordered eating in childhood, adolescence, and adulthood: A Mendelian randomization analysis. American Journal of Clinical Nutrition, 106, 764772.Google ScholarPubMed
Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., Breen, G., … Sullivan, P. F. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18, 497511.Google ScholarPubMed
Rohde, K., Keller, M., Horstmann, A., Liu, X., Eichelmann, F., Stumvoll, M., … Böttcher, Y. (2015). Role of genetic variants in ADIPOQ in human eating behavior. Genes and Nutrition, 10, 449.CrossRefGoogle ScholarPubMed
Ryan, J., Saffery, R., & Patton, G. (2018). Epigenetics: A missing link in understanding psychiatric disorders? The Lancet. Psychiatry, 5, 89.CrossRefGoogle ScholarPubMed
Saffrey, R., Novakovic, B., & Wade, T. D. (2014). Assessing global and gene specific DNA methylation in anorexia nervosa: A pilot study. International Journal of Eating Disorders, 47, 206210.CrossRefGoogle ScholarPubMed
Schank, J. R. (2014). The neurokinin-1 receptor in addictive processes. Journal of Pharmacology and Experimental Therapeutics, 351, 28.CrossRefGoogle ScholarPubMed
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43, 969976.CrossRefGoogle Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.CrossRefGoogle Scholar
Sharp, S. I., McQuillin, A., Marks, M., Hunt, S. P., Stanford, S. C., Lydall, G. J., … Gurling, H. M. (2014). Genetic association of the tachykinin receptor 1 TACR1 gene in bipolar disorder, attention deficit hyperactivity disorder, and the alcohol dependence syndrome. American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics, 165b, 373380.CrossRefGoogle ScholarPubMed
Smoller, J. W. (2019). Psychiatric genetics begins to find its footing. American Journal of Psychiatry, 176, 609614.CrossRefGoogle ScholarPubMed
Solmi, F., Mascarell, M. C., Zammit, S., Kirkbride, J. B., & Lewis, G. (2019). Polygenic risk for schizophrenia, disordered eating behaviours and body mass index in adolescents. British Journal of Psychiatry, 215, 428433.CrossRefGoogle ScholarPubMed
Steinberg, G. R., & Kemp, B. E. (2007). Adiponectin: Starving for attention. Cell Metabolism, 6, 34.CrossRefGoogle Scholar
Stice, E., Gau, J. M., Rohde, P., & Shaw, H. (2017). Risk factors that predict future onset of each DSM-5 eating disorder: Predictive specificity in high-risk adolescent females. Journal of Abnormal Psychology, 126, 3851.CrossRefGoogle ScholarPubMed
Stice, E., Presnell, K., & Spangler, D. (2002). Risk factors for binge eating onset in adolescent girls: A 2-year prospective investigation. Health Psychology, 21, 131138.CrossRefGoogle ScholarPubMed
Teumer, A. (2018). Common methods for performing Mendelian randomization. Frontiers in Cardiovascular Medicine, 5, 51.CrossRefGoogle ScholarPubMed
Tremolizzo, L., Conti, E., Bomba, M., Uccellini, O., Rossi, M. S., Marfone, M., … Nacinovich, R. (2014). Decreased whole-blood global DNA methylation is related to serum hormones in anorexia nervosa adolescents. World Journal of Biological Psychiatry, 15, 327333.CrossRefGoogle ScholarPubMed
Udo, T., & Grilo, C. M. (2018). Prevalence and correlates of DSM-5-defined eating disorders in a nationally representative sample of U.S. adults. Biological Psychiatry, 84, 345354.CrossRefGoogle Scholar
Wade, T. D., Bulik, C. M., Neale, M., & Kendler, K. S. (2000). Anorexia nervosa and major depression: Shared genetic and environmental risk factors. American Journal of Psychiatry, 157, 469471.CrossRefGoogle ScholarPubMed
Walters, E. E., & Kendler, K. S. (1995). Anorexia nervosa and anorexic-like syndromes in a population-based female twin sample. American Journal of Psychiatry, 152, 6471.Google Scholar
Wang, K., Zhang, H., Bloss, C. S., Duvvuri, V., Kaye, W., Schork, N. J., … Hakonarson, H. (2011). A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Molecular Psychiatry, 16, 949959.CrossRefGoogle ScholarPubMed
Watson, H. J., Yilmaz, Z., Thornton, L. M., Hübel, C., Coleman, J. R. I., Gaspar, H. A., … Bulik, C. M. (2019). Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 51, 12071214.CrossRefGoogle ScholarPubMed
Wray, N. R., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., Murray, G. K., … Visscher, P. M. (2021). From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry, 78, 101109.CrossRefGoogle ScholarPubMed
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Sullivan, P. F. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50, 668681.CrossRefGoogle ScholarPubMed
Yao, S., Larsson, H., Norring, C., Birgegard, A., Lichtenstein, P., D'Onofrio, B. M., … Kuja-Halkola, R. (2021). Genetic and environmental contributions to diagnostic fluctuation in anorexia nervosa and bulimia nervosa. Psychological Medicine, 51, 6269.CrossRefGoogle ScholarPubMed
Yilmaz, Z., Halvorsen, M., Bryois, J., Yu, D., Thornton, L. M., Zerwas, S., … Crowley, J. J. (2020). Examination of the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder. Molecular Psychiatry, 25, 20362046.CrossRefGoogle ScholarPubMed
Yilmaz, Z., Schaumberg, K., Crowley, J., Breen, G., Bulik, C., Micali, N., & Zerwas, S. (2019). 64 - Anorexia nervosa and obsessive compulsive polygenic risk score: Associations with adolescent eating disorder phenotypes. European Neuropsychopharmacology, 29, S818S819.CrossRefGoogle Scholar
Yilmaz, Z., Szatkiewicz, J. P., Crowley, J. J., Ancalade, N., Brandys, M. K., van Elburg, A., … Bulik, C. M. (2017). Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa. Psychiatric Genetics, 27, 152158.CrossRefGoogle ScholarPubMed
Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., … Yang, J. (2018). Causal associations between risk factors and common diseases inferred from GWAS summary data. Nature Communications, 9, 224.CrossRefGoogle ScholarPubMed
Supplementary material: File

Watson et al. supplementary material

Watson et al. supplementary material

Download Watson et al. supplementary material(File)
File 26 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Genetics of eating disorders in the genome-wide era
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Genetics of eating disorders in the genome-wide era
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Genetics of eating disorders in the genome-wide era
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *