Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.878 Render date: 2022-08-11T18:09:26.091Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Effects of slow-wave activity on mood disturbance in major depressive disorder

Published online by Cambridge University Press:  29 May 2018

Jennifer R. Goldschmied*
Affiliation:
Center for Sleep & Circadian Neurobiology, University of Pennsylvania, 125 S.31st St, Philadelphia, PA 19104, USA
Philip Cheng
Affiliation:
Sleep Disorders and Research Center, Henry Ford Health System, 39450 W 12 Mile Rd, Novi MI 48377, USA
Robert Hoffmann
Affiliation:
Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
Elaine M. Boland
Affiliation:
Behavioral Health Service, Cpl. Michael J. Crescenz VA Medical Center, 3900 Woodland Ave., Philadelphia, PA 19104, USA
Patricia J. Deldin
Affiliation:
Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
Roseanne Armitage
Affiliation:
Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA
*
Author for correspondence: Jennifer R. Goldschmied, E-mail: jrgolds2@pennmedicine.upenn.edu

Abstract

Background

Studies have demonstrated that decreases in slow-wave activity (SWA) predict decreases in depressive symptoms in those with major depressive disorder (MDD), suggesting that there may be a link between SWA and mood. The aim of the present study was to determine if the consequent change in SWA regulation following a mild homeostatic sleep challenge would predict mood disturbance.

Methods

Thirty-seven depressed and fifty-nine healthy adults spent three consecutive nights in the sleep laboratory. On the third night, bedtime was delayed by 3 h, as this procedure has been shown to provoke SWA. The Profile of Mood States questionnaire was administered on the morning following the baseline and sleep delay nights to measure mood disturbance.

Results

Results revealed that following sleep delay, a lower delta sleep ratio, indicative of inadequate dissipation of SWA from the first to the second non-rapid eye movement period, predicted increased mood disturbance in only those with MDD.

Conclusions

These data demonstrate that in the first half of the night, individuals with MDD who have less SWA dissipation as a consequence of impaired SWA regulation have greater mood disturbance, and may suggest that appropriate homeostatic regulation of sleep is an important factor in the disorder.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Retired.

References

Antonijevic, IA, Stalla, GK and Steiger, A (2000) Modulation of the sleep electroencephalogram by estrogen replacement in postmenopausal women. American Journal of Obstetrics and Gynecology 182, 277282.CrossRefGoogle ScholarPubMed
Armitage, R (2007) Sleep and circadian rhythms in mood disorders. Acta Psychiatrica Scandinavica 115, 104115.CrossRefGoogle Scholar
Armitage, R, Hoffmann, R, Conroy, DA, Arnedt, JT and Brower, KJ (2012) Effects of a 3-hour sleep delay on sleep homeostasis in alcohol dependent adults. Sleep 35, 273278.CrossRefGoogle ScholarPubMed
Armitage, R, Hoffmann, R, Fitch, T, Trivedi, M and Rush, AJ (2000) Temporal characteristics of delta activity during NREM sleep in depressed outpatients and healthy adults: group and sex effects. Sleep 23, 607617.CrossRefGoogle ScholarPubMed
Armitage, R, Hoffmann, R, Trivedi, M and Rush, AJ (2000) Slow-wave activity in NREM sleep: sex and age effects in depressed outpatients and healthy controls. Psychiatry Research 95, 201213.CrossRefGoogle ScholarPubMed
Baglioni, C, Nanovska, S, Regen, W, Spiegelhalder, K, Feige, B, Nissen, C, Reynolds, CF III and Riemann, D (2016) Sleep and mental disorders: a meta-analysis of polysomnographic research. Psychological Bulletin 142, 969990.CrossRefGoogle ScholarPubMed
Beck, AT, Steer, RA and Brown, GK (1996) Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Borbely, AA (2001) From slow waves to sleep homeostasis: new perspectives. Archives Italiennes de Biologie 139, 5361.Google ScholarPubMed
Cheng, P, Goldschmied, J, Casement, M, Kim, HS, Hoffmann, R, Armitage, R and Deldin, P (2015) Reduction in delta activity predicted improved negative affect in Major Depressive Disorder. Psychiatry Research 228, 715718.CrossRefGoogle ScholarPubMed
Curran, SL, Andrykowski, MA and Studts, JL (1995) Short form of the Profile of Mood States (POMS-SF): psychometric information. Psychological Assessment 7, 8083.CrossRefGoogle Scholar
de Vivo, L, Bellesi, M, Marshall, W, Bushong, EA, Ellisman, MH, Tononi, G and Cirelli, C (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507510.CrossRefGoogle ScholarPubMed
Diering, GH, Nirujogi, RS, Roth, RH, Worley, PF, Pandey, A and Huganir, RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511515.CrossRefGoogle ScholarPubMed
Dinges, DF, Pack, F, Williams, K, Gillen, KA, Powell, JW, Ott, GE, Aptowicz, C and Pack, AI (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20, 267277.Google ScholarPubMed
Drevets, WC, Price, JL, Simpson, JR Jr, Todd, RD, Reich, T, Vannier, M and Raichle, ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824827.CrossRefGoogle ScholarPubMed
Duncan, WC, Sarasso, S, Ferrarelli, F, Selter, J, Riedner, BA, Hejazi, NS, Yuan, P, Brutsche, N, Manji, HK, Tononi, G and Zarate, CA (2013) Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. The International Journal of Neuropsychopharmacology 16, 301311.CrossRefGoogle ScholarPubMed
Gillin, JC, Buchsbaum, M, Wu, J, Clark, C and Bunney, W (2001) Sleep deprivation as a model experimental antidepressant treatment: findings from functional brain imaging. Depression and Anxiety 14, 3749.CrossRefGoogle ScholarPubMed
Goldschmied, JR, Cheng, P, Armitage, R and Deldin, PJ (2014) Examining the effects of sleep delay on depressed males and females and healthy controls. Journal of Sleep Research 23, 664672.CrossRefGoogle ScholarPubMed
Gorgulu, Y and Caliyurt, O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Research Bulletin 80, 158162.CrossRefGoogle ScholarPubMed
Kuhn, M, Wolf, E, Maier, JG, Mainberger, F, Feige, B, Schmid, H, Bürklin, J, Maywald, S, Mall, V and Jung, NH (2016) Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nature Communications 7, 12455.CrossRefGoogle ScholarPubMed
Kuhn, M, Mainberger, F, Feige, B, Maier, JG, Mall, V, Jung, NH, Reis, J, Kloppel, S, Normann, C and Nissen, C (2016) State-dependent partial occlusion of cortical LTP-like plasticity in major depression. Neuropsychopharmacology 41, 15211529.CrossRefGoogle ScholarPubMed
Kupfer, DJ, Frank, E, McEachran, AB and Grochocinski, VJ (1990) Delta sleep ratio: a biological correlate of early recurrence in unipolar affective disorder. Archives of General Psychiatry 47, 11001105.CrossRefGoogle ScholarPubMed
Landsness, EC, Goldstein, MR, Peterson, MJ, Tononi, G and Benca, RM (2011) Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. Journal of Psychiatric Research 45, 10191026.CrossRefGoogle ScholarPubMed
Lee, JH, Reynolds, CF, Hoch, CC, Buysse, DJ, Mazumdar, S, George, CJ and Kupfer, DJ (1993) Electoencephalographic sleep in recently remitted, elderly depressed patients in double-blind placebo-maintenance therapy. Neuropsychopharmacology 8, 143150.CrossRefGoogle Scholar
Lindstrom, MJ and Bates, DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46, 673687CrossRefGoogle ScholarPubMed
Liu, ZW, Faraguna, U, Cirelli, C, Tononi, G and Gao, XB (2010) Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30, 86718675.CrossRefGoogle ScholarPubMed
Lotrich, FE and Germain, A (2015) Decreased delta sleep ratio and elevated alpha power predict vulnerability to depression during interferon-alpha treatment. Acta Neuropsychiatrica 27, 1424.CrossRefGoogle ScholarPubMed
McCormack, HM, David, JdL and Sheather, S (1988) Clinical applications of visual analogue scales: a critical review. Psychological Medicine 18, 10071019.CrossRefGoogle ScholarPubMed
Nissen, C, Feige, B, König, A, Voderholzer, U, Berger, M and Riemann, D (2001) Delta sleep ratio as a predictor of sleep deprivation response in major depression. Journal of Psychiatric Research 35, 155163.CrossRefGoogle ScholarPubMed
Nissen, C, Holz, J, Blechert, J, Feige, B, Riemann, D, Voderholzer, U and Normann, C (2010) Learning as a model for neural plasticity in major depression. Biological Psychiatry 68, 544552.CrossRefGoogle ScholarPubMed
Pittenger, C and Duman, RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33, 88109.CrossRefGoogle Scholar
Player, MJ, Taylor, JL, Weickert, CS, Alonzo, A, Sachdev, P, Martin, D, Mitchell, PB and Loo, CK (2013) Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38, 21012108.CrossRefGoogle ScholarPubMed
Rechtschaffen, A and Kales, A (1968) A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Los Angeles: BIS/BRI University of California.Google Scholar
Scott, JP, McNaughton, LR and Polman, RC (2006) Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiology & Behavior 87, 396408.CrossRefGoogle Scholar
Shacham, S (1983) A shortened version of the Profile of Mood States. Journal of Personality Assessment 47, 305306.CrossRefGoogle ScholarPubMed
Swanson, LM, Hoffmann, R and Armitage, R (2010) Sleep macroarchitecture in depression: sex differences. The Open Sleep Journal 3, 1218.CrossRefGoogle Scholar
Thase, ME, Fasiczka, AL, Berman, SR, Simons, AD and Reynolds, CF (1998) Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression. Archives of General Psychiatry 55, 138144.CrossRefGoogle Scholar
Tononi, G and Cirelli, C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Research Bulletin 62, 143150.CrossRefGoogle ScholarPubMed
Tononi, G and Cirelli, C (2012) Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plasticity 2012, 415250.CrossRefGoogle ScholarPubMed
Watson, NF, Badr, MS, Belenky, G, Bliwise, DL, Buxton, OM, Buysse, D, Dinges, DF, Gangwisch, J, Grandner, MA and Kushida, C (2015) Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Journal of Clinical Sleep Medicine 11, 591592.Google ScholarPubMed
Wirz-Justice, A, Van den, Hoofdakker and Rutger, H (1999) Sleep deprivation in depression: what do we know, where do we go? Biological Psychiatry 46, 445453.CrossRefGoogle Scholar
Wolf, E, Kuhn, M, Normann, C, Mainberger, F, Maier, JG, Maywald, S, Bredl, A, Klöppel, S, Biber, K and van Calker, D (2016) Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Medicine Reviews 30, 5362.CrossRefGoogle ScholarPubMed
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of slow-wave activity on mood disturbance in major depressive disorder
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of slow-wave activity on mood disturbance in major depressive disorder
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of slow-wave activity on mood disturbance in major depressive disorder
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *