Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-67wr7 Total loading time: 0.317 Render date: 2022-12-07T17:57:56.855Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Data-driven cognitive phenotypes in subjects with bipolar disorder and their clinical markers of severity

Published online by Cambridge University Press:  14 October 2020

Francisco Diego Rabelo-da-Ponte
Affiliation:
Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Flavia Moreira Lima
Affiliation:
Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Anabel Martinez-Aran
Affiliation:
Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
Flávio Kapczinski
Affiliation:
Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
Eduard Vieta
Affiliation:
Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
Adriane Ribeiro Rosa
Affiliation:
Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Departamento de Farmacologia, Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Maurício Kunz
Affiliation:
Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Leticia Sanguinetti Czepielewski*
Affiliation:
Molecular Psychiatry Laboratory, Hospital de Clinicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Programa de Pós-Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
*
Author for correspondence: Leticia Sanguinetti Czepielewski, E-mail: leticia.czepielewski@ufrgs.br

Abstract

Background

Subjects with bipolar disorder (BD) show heterogeneous cognitive profile and that not necessarily the disease will lead to unfavorable clinical outcomes. We aimed to identify clinical markers of severity among cognitive clusters in individuals with BD through data-driven methods.

Methods

We recruited 167 outpatients with BD and 100 unaffected volunteers from Brazil and Spain that underwent a neuropsychological assessment. Cognitive functions assessed were inhibitory control, processing speed, cognitive flexibility, verbal fluency, working memory, short- and long-term verbal memory. We performed hierarchical cluster analysis and discriminant function analysis to determine and confirm cognitive clusters, respectively. Then, we used classification and regression tree (CART) algorithm to determine clinical and sociodemographic variables of the previously defined cognitive clusters.

Results

We identified three neuropsychological subgroups in individuals with BD: intact (35.3%), selectively impaired (34.7%), and severely impaired individuals (29.9%). The most important predictors of cognitive subgroups were years of education, the number of hospitalizations, and age, respectively. The model with CART algorithm showed sensitivity 45.8%, specificity 78.4%, balanced accuracy 62.1%, and the area under the ROC curve was 0.61. Of 10 attributes included in the model, only three variables were able to separate cognitive clusters in BD individuals: years of education, number of hospitalizations, and age.

Conclusion

These results corroborate with recent findings of neuropsychological heterogeneity in BD, and suggest an overlapping between premorbid and morbid aspects that influence distinct cognitive courses of the disease.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anaya, C., Torrent, C., Caballero, F. F., Vieta, E., Bonnin, C. D. M., Ayuso-Mateos, J. L., … Vega, P. (2016). Cognitive reserve in bipolar disorder: Relation to cognition, psychosocial functioning and quality of life. Acta Psychiatrica Scandinavica, 133(5), 386398. https://doi.org/10.1111/acps.12535.CrossRefGoogle ScholarPubMed
Baños, J. H., & Martin, R. C. (2002). California Verbal Learning Test: D. Delis, J. Kramer, E. Kaplan, B. Ober. San Antonio, TX. The Psychological Corporation, 2000. Elsevier.Google Scholar
Benedict, R. H. B., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins verbal learning test – revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12(1), 4355. https://doi.org/10.1076/clin.12.1.43.1726.CrossRefGoogle Scholar
Bora, E., Hıdıroğlu, C., Özerdem, A., Kaçar, Ö. F., Sarısoy, G., Civil Arslan, F., … Tümkaya, S. (2016). Executive dysfunction and cognitive subgroups in a large sample of euthymic patients with bipolar disorder. European Neuropsychopharmacology, 26(8), 13381347. https://doi.org/10.1016/j.euroneuro.2016.04.002.CrossRefGoogle Scholar
Bora, E., & Özerdem, A. (2017). Meta-analysis of longitudinal studies of cognition in bipolar disorder: Comparison with healthy controls and schizophrenia. Psychological Medicine, 2010, 114. https://doi.org/10.1017/S0033291717001490.Google Scholar
Burdick, K. E., Millett, C. E., del Mar Bonnín, C., Bowie, C., Carvalho, A. F., Eyler, L. T., … Young, A. (2019). The international consortium investigating neurocognition in bipolar disorder (ICONIC – BD). Bipolar Disorders, 21(1), bdi.12748. https://doi.org/10.1111/bdi.12748.CrossRefGoogle Scholar
Burdick, K. E., Russo, M., Frangou, S., Mahon, K., Braga, R. J., Shanahan, M., & Malhotra, A. K. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: Clinical implications. Psychological Medicine, 44(14), 30833096. https://doi.org/10.1017/S0033291714000439.CrossRefGoogle ScholarPubMed
Cardoso, T., Bauer, I. E., Meyer, T. D., Kapczinski, F., & Soares, J. C. (2015). Neuroprogression and cognitive functioning in bipolar disorder: A systematic review. Current Psychiatry Reports, 17(9), 75. https://doi.org/10.1007/s11920-015-0605-x.CrossRefGoogle ScholarPubMed
Czepielewski, L. S., Massuda, R., Goi, P., Sulzbach-Vianna, M., Reckziegel, R., Costanzi, M., … Gama, C. S. (2015). Verbal episodic memory along the course of schizophrenia and bipolar disorder: A new perspective. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 25(2), 169175. https://doi.org/10.1016/j.euroneuro.2014.09.006.CrossRefGoogle ScholarPubMed
da Costa, S. C., Passos, I. C., Lowri, C., Soares, J. C., & Kapczinski, F. (2016). Refractory bipolar disorder and neuroprogression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 70, 103110. https://doi.org/10.1016/j.pnpbp.2015.09.005.CrossRefGoogle ScholarPubMed
Dennison, O., Wu, Q., & Ickes, M. (2014). Prevalence of human immunodeficiency virus testing and associated risk factors in college students. Journal of American College Health, 62(5), 309318. https://doi.org/10.1080/07448481.2014.899232.CrossRefGoogle ScholarPubMed
Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14(1), 91118. https://doi.org/10.1146/annurev-clinpsy-032816-045037.CrossRefGoogle ScholarPubMed
Dykxhoorn, J., Hatcher, S., Roy-Gagnon, M. H., & Colman, I. (2017). Early life predictors of adolescent suicidal thoughts and adverse outcomes in two population-based cohort studies. PLoS ONE, 12(8), e0183182. https://doi.org/10.1371/journal.pone.0183182.CrossRefGoogle ScholarPubMed
Field, A. (2013). Discovering Statistics using IBM SPSS Statistics – Cluster Analysis. Discovering Statistics Using IBM SPSS Statistics, 297321. https://doi.org/10.1016/B978-012691360-6/50012-4.CrossRefGoogle Scholar
Forcada, I., Mur, M., Mora, E., Vieta, E., Bartrés-Faz, D., & Portella, M. J.(2015). The influence of cognitive reserve on psychosocial and neuropsychological functioning in bipolar disorder. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 25(2), 214222. https://doi.org/10.1016/j.euroneuro.2014.07.018.CrossRefGoogle ScholarPubMed
Geoffroy, P. A., Etain, B., Scott, J., Henry, C., Jamain, S., Leboyer, M., & Bellivier, F. (2013). Reconsideration of bipolar disorder as a developmental disorder: Importance of the time of onset. Journal of Physiology-Paris, 107(4), 278285. https://doi.org/10.1016/j.jphysparis.2013.03.006.CrossRefGoogle ScholarPubMed
Ghatak, A. (2017). Machine Learning with R. In Machine Learning with R. Springer Singapore. https://doi.org/10.1007/978-981-10-6808-9.CrossRefGoogle Scholar
Gildengers, A. G., Mulsant, B. H., Begley, A., Mazumdar, S., Hyams, A. V, Reynolds, C. F. III, … Butters, M. A. (2009). The longitudinal course of cognition in older adults with bipolar disorder. Bipolar Disorders, 11(7), 744752. https://doi.org/10.1111/j.1399-5618.2009.00739.x.CrossRefGoogle ScholarPubMed
Green, M. J., Girshkin, L., Kremerskothen, K., Watkeys, O., & Quidé, Y. (2019). A systematic review of studies reporting data-driven cognitive subtypes across the psychosis spectrum. Neuropsychology Review, 115. https://doi.org/10.1007/s11065-019-09422-7.Google ScholarPubMed
Hayes, T., Usami, S., Jacobucci, R., & McArdle, J. J. (2015). Using classification and regression trees (CART) and random forests to analyze attrition: Results from two simulations. Psychology and Aging, 30(4), 911929. https://doi.org/10.1037/pag0000046.CrossRefGoogle ScholarPubMed
Hermens, D. F., Naismith, S. L., Chitty, K. M., Lee, R. S. C., Tickell, A., Duffy, S. L., … Lagopoulos, J. (2015). Cluster analysis reveals abnormal hippocampal neurometabolic profiles in young people with mood disorders. European Neuropsychopharmacology, 25(6), 836845. https://doi.org/10.1016/j.euroneuro.2015.02.009.CrossRefGoogle ScholarPubMed
Hermens, D. F., Redoblado Hodge, M. A., Naismith, S. L., Kaur, M., Scott, E., & Hickie, I. B. (2011). Neuropsychological clustering highlights cognitive differences in young people presenting with depressive symptoms. Journal of the International Neuropsychological Society, 17(2), 267276. https://doi.org/10.1017/S1355617710001566.CrossRefGoogle ScholarPubMed
Iverson, G. L., Brooks, B. L., Langenecker, S. A., & Young, A. H. (2011). Identifying a cognitive impairment subgroup in adults with mood disorders. Journal of Affective Disorders, 132(3), 360367. https://doi.org/10.1016/j.jad.2011.03.001.CrossRefGoogle ScholarPubMed
Jensen, J. H., Knorr, U., Vinberg, M., Kessing, L. V., & Miskowiak, K. W. (2016). Discrete neurocognitive subgroups in fully or partially remitted bipolar disorder: Associations with functional abilities. Journal of Affective Disorders, 205, 378386. https://doi.org/10.1016/j.jad.2016.08.018.CrossRefGoogle ScholarPubMed
Jensen, J. H., Støttrup, M. M., Nayberg, E., Knorr, U., Ullum, H., Purdon, S. E., … Miskowiak, K. W. (2015). Optimising screening for cognitive dysfunction in bipolar disorder: Validation and evaluation of objective and subjective tools. Journal of Affective Disorders, 187, 1019. https://doi.org/10.1016/j.jad.2015.07.039.CrossRefGoogle ScholarPubMed
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230243. https://doi.org/10.1136/svn-2017-000101.CrossRefGoogle ScholarPubMed
Levy, B., Stephansky, M. R., Dobie, K. C., Monzani, B. A., Medina, A. M., & Weiss, R. D. (2009). The duration of inpatient admission predicts cognitive functioning at discharge in patients with bipolar disorder. Comprehensive Psychiatry, 50(4), 322326. https://doi.org/10.1016/j.comppsych.2008.09.005.CrossRefGoogle ScholarPubMed
Lewandowski, K. E., Sperry, S. H., Malloy, M. C., & Forester, B. P. (2014). Age as a predictor of cognitive decline in bipolar disorder. American Journal of Geriatric Psychiatry, 22(12), 14621468. https://doi.org/10.1016/j.jagp.2013.10.002.CrossRefGoogle ScholarPubMed
López-Jaramillo, C., Lopera-Vásquez, J., Gallo, A., Ospina-Duque, J., Bell, V., Torrent, C., … Vieta, E. (2010). Effects of recurrence on the cognitive performance of patients with bipolar I disorder: Implications for relapse prevention and treatment adherence. Bipolar Disorders, 12(5), 557567. https://doi.org/10.1111/j.1399-5618.2010.00835.x.CrossRefGoogle ScholarPubMed
Martino, D. J., Strejilevich, S. A., Marengo, E., Ibañez, A., Scápola, M., & Igoa, A. (2014). Toward the identification of neurocognitive subtypes in euthymic patients with bipolar disorder. Journal of Affective Disorders, 167, 118124. https://doi.org/10.1016/j.jad.2014.05.059.CrossRefGoogle ScholarPubMed
Martino, D. J., Strejilevich, S. A., Scápola, M., Igoa, A., Marengo, E., Ais, E. D., & Perinot, L. (2008). Heterogeneity in cognitive functioning among patients with bipolar disorder. Journal of Affective Disorders, 109(1–2), 149156. https://doi.org/10.1016/j.jad.2007.12.232.CrossRefGoogle ScholarPubMed
Nathan, A. J., & Scobell, A. (2012). How China sees America. Foreign Affairs, 91(5), 1396. https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
Passos, I. C., Mwangi, B., Vieta, E., Berk, M., & Kapczinski, F. (2016). Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatrica Scandinavica, 134(2), 91103. https://doi.org/10.1111/acps.12581.CrossRefGoogle ScholarPubMed
Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer's and Dementia, 9(1), 6375.e2. https://doi.org/10.1016/j.jalz.2012.11.007.CrossRefGoogle ScholarPubMed
Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 10221029. https://doi.org/10.1093/schbul/sbn044.CrossRefGoogle ScholarPubMed
Robinson, L. J., & Ferrier, I. N. (2006). Evolution of cognitive impairment in bipolar disorder: A systematic review of cross-sectional evidence. Bipolar Disorders, 8(2), 103116. https://doi.org/10.1111/j.1399-5618.2006.00277.x.CrossRefGoogle ScholarPubMed
Russo, M., Van Rheenen, T. E., Shanahan, M., Mahon, K., Perez-Rodriguez, M. M., Cuesta-Diaz, A., … Burdick, K. E. (2017). Neurocognitive subtypes in patients with bipolar disorder and their unaffected siblings. Psychological Medicine, 47(16), 2892. https://doi.org/10.1017/S003329171700143X.CrossRefGoogle ScholarPubMed
Scarpina, F., & Tagini, S. (2017). The stroop color and word test. Frontiers in Psychology, 8, 557. https://doi.org/10.3389/fpsyg.2017.00557.CrossRefGoogle ScholarPubMed
Solé, B., Jiménez, E., Torrent, C., del Mar Bonnin, C., Torres, I., Reinares, M., … Martínez-Arán, A. (2016). Cognitive variability in bipolar II disorder: WHO is cognitively impaired and who is preserved. Bipolar Disorders, 18(3), 288299. https://doi.org/10.1111/bdi.12385.CrossRefGoogle ScholarPubMed
Takeuchi, M., Takeuchi, H., Kawakubo, H., Booka, E., Mayanagi, S., Fukuda, K., … Kitagawa, Y. (2018). Perioperative risk calculator predicts long-term oncologic outcome for patients with esophageal carcinoma. Annals of Surgical Oncology, 25(3), 837843. https://doi.org/10.1245/s10434-017-6311-7.CrossRefGoogle ScholarPubMed
Tomasini, C., Borges, E. N., Machado, K., & Emmendorfer, L. (2017). A study on the relationship between internal and external validity indices applied to partitioning and density-based clustering algorithms. ICEIS 2017 – Proceedings of the 19th International Conference on Enterprise Information Systems, 1(Iceis), 8998. https://doi.org/10.5220/0006317000890098.CrossRefGoogle Scholar
Tombaugh, T. N. (2004). Trail making test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203214. https://doi.org/10.1016/S0887-6177(03)00039-8.CrossRefGoogle Scholar
Tombaugh, T. N., Kozak, J., & Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology, 14(2), 167177. https://doi.org/10.1016/S0887-6177(97)00095-4.Google ScholarPubMed
Torres, I. J., Boudreau, V. G., & Yatham, L. N. (2007). Neuropsychological functioning in euthymic bipolar disorder: A meta-analysis. Acta Psychiatrica Scandinavica. Supplementum, 434, 1726. https://doi.org/10.1111/j.1600-0447.2007.01055.x.CrossRefGoogle Scholar
Tyrovolas, S., Tountas, Y., Polychronopoulos, E., & Panagiotakos, D. (2012). A classification and regression tree analysis for the evaluation of the role of nutritional services on cardiovascular disease risk status of older people living in Greek islands and Cyprus. International Journal of Food Sciences and Nutrition, 63(5), 522529. https://doi.org/10.3109/09637486.2011.641941.CrossRefGoogle ScholarPubMed
Van Rheenen, T. E., Lewandowski, K. E., Bauer, I. E., Kapczinski, F., Miskowiak, K., Burdick, K. E., & Balanzá-Martínez, V. (2020). Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disorders, 22(1), 1327. https://doi.org/10.1111/bdi.12821.CrossRefGoogle ScholarPubMed
Vieta, E., Popovic, D., Rosa, A. R., Solé, B., Grande, I., Frey, B. N., … Kapczinski, F. (2013). The clinical implications of cognitive impairment and allostatic load in bipolar disorder. European Psychiatry, 28(1), 2129. https://doi.org/10.1016/j.eurpsy.2011.11.007.CrossRefGoogle ScholarPubMed
Yates, D. B., Trentini, C. M., Tosi, S. D., Corrêa, S. K., Poggere, L. C., & Valli, F. (2006). Apresentação da Escala de Inteligência Wechsler Abreviada (WASI). Avaliação Psicológica, 5(2), 227233.Google Scholar
Supplementary material: File

Rabelo-da-Ponte et al. Supplementary Materials

Rabelo-da-Ponte et al. Supplementary Materials 1

Download Rabelo-da-Ponte et al. Supplementary Materials(File)
File 181 KB
Supplementary material: File

Rabelo-da-Ponte et al. Supplementary Materials

Rabelo-da-Ponte et al. Supplementary Materials 2

Download Rabelo-da-Ponte et al. Supplementary Materials(File)
File 68 KB
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Data-driven cognitive phenotypes in subjects with bipolar disorder and their clinical markers of severity
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Data-driven cognitive phenotypes in subjects with bipolar disorder and their clinical markers of severity
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Data-driven cognitive phenotypes in subjects with bipolar disorder and their clinical markers of severity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *