Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T23:11:30.723Z Has data issue: false hasContentIssue false

Prospects for establishing a tomato gene tagging system using the maize transposon Activator (Ac)

Published online by Cambridge University Press:  05 December 2011

J. D. G. Jones
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
G. Bishop
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
B. Carroll
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
M. Dickinson
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
J. English
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
K. Harrison
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
D. Jones
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
S. Scofield
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
C. M. Thomas
Affiliation:
Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K.
Get access

Synopsis

In tomato (Lycopersicon esculentum Mill.), extensive variation can be observed in genes conditioning many plant functions including disease resistance, plant development, and fruit, leaf and hypocotyl pigmentation. Genes exist that confer resistance to viruses, nematodes, bacteria and fungi. There is great value in developing a facile system for isolating such genes, and we are attempting to create a tomato gene isolation system based on insertional mutagenesis with the maize transposon Ac. Our chosen target genes (Cf-2, Cf-4, Cf-5 and Cf-9) confer resistance to specific races of the fungus Cladosporium fulvum Cooke, the causal agent of leaf mould. We have used classical and molecular techniques to map three of these genes, correcting errors in previous reports. Ac-carrying T-DNA constructs have been developed to facilitate monitoring of Ac activity in tomato, where Ac is extremely active. These constructs have been used in plant transformation experiments, and over 100 tomato lines carrying Ac have been created. More than 20 T-DNAs carrying Ac have been localised on the tomato genetic map by testing linkage to RFLP loci. This was carried out to exploit the preference of Ac for transposition to linked sites in our tagging strategy.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, B., Schell, J., Loerz, H., & Fedoroff, N. 1986. Transposition of the maize controlling element “Activator” in tobacco. Proceedings of the National Academy of Sciences, U.S.A. 83, 4844–8.CrossRefGoogle Scholar
Baker, B., Coupland, G., Fedoroff, N., Starlinger, P., & Schell, J. 1987. Phenotypic assay for excision of the maize controlling element Ac in tobacco. Embo Journal, 6, 1547–54.CrossRefGoogle ScholarPubMed
Banks, J. A., Masson, P., & Fedoroff, N. 1988. Molecular mechanisms in the developmental regulation of the maize suppressor-mutator transposable element. Genes Dev 2, 1364–80.CrossRefGoogle ScholarPubMed
Bernatzky, R., & Tanksley, S. D. 1986. Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112, 887–98.CrossRefGoogle Scholar
Chyi, Y.-S., Jorgensen, R. A., Goldstein, D., Tanksley, S. D., & Loaiza-Figueroa, F., 1986. Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol. Gen. Genet. 204, 64–9.CrossRefGoogle Scholar
Coen, E. S., & Carpenter, R. 1986. Transposable elements in Antirrhinum majus: Generators of genetic diversity. Trends in Genet 2, 292–6.CrossRefGoogle Scholar
Coen, E. S., Romero, J. M., Doyle, S., Elliott, R., Murphy, G., & Carpenter, R. 1990. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–22.Google Scholar
Day, P. R. 1956. Race names of Cladosporium fulvum. Rep. Tom. Gen. Coop. 6, 1314.Google Scholar
De-Wit, P. J. G. M., Hofman, A. E., Velthuis, G. C. M., & Kuc, J. A. 1985. Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (Syn. Fulvia fulva) and tomato. Plant Physiology 77, 642–7.CrossRefGoogle ScholarPubMed
DeBlock, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., RaoMovva, N., Thompson, C., VanMontagu, M., & Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. Embo Journal 6, 2513–8.CrossRefGoogle Scholar
Dean, C., van-den-Elzen, P., Tamaki, S., Black, M., Dunsmuir, P., & Bedbrook, J. 1987. Molecular characterization of the rbcS multi-gene family of Petunia (Mitchell). Mol. Gen. Genet. 206, 465–74.CrossRefGoogle Scholar
Dooner, H. K., & Belachew, A. 1989. Transposition pattern of the maize element Ac from the bz-m2 (Ac) allele. Genetics 122, 447–57.CrossRefGoogle ScholarPubMed
Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5, 726–30.Google Scholar
Greenblatt, I. M. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics 108, 471–85.CrossRefGoogle ScholarPubMed
Hake, S., Vollbrecht, E., & Freeling, M. 1989. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. Embo Journal 8, 1522.CrossRefGoogle ScholarPubMed
Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., & Schilperoort, R. A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–80.CrossRefGoogle Scholar
Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T., (1985). A simple and general method of transferring genes into plants. Science (Wash.) 227, 1229–31.CrossRefGoogle Scholar
Jacobs, J. P., & Yoder, J. I. 1989. Ploidy levels in transgenic tomato plants determined by chloroplast number. Plant Cell Reports 7, 662–4.CrossRefGoogle ScholarPubMed
Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo Journal 6, 3901–7.CrossRefGoogle ScholarPubMed
Jones, J. D. G., Carland, F. M., Maliga, P., & Dooner, H. K. 1989. Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science (Wash.) 244, 204–7.CrossRefGoogle ScholarPubMed
Jones, J. D. G., Carland, F. C., Harper, L., Lim, E., & Dooner, H. 1990a. Genetic properties of the maize transposon Activator (Ac) in tobacco. Plant Gene Transfer (UCLA Symp. Vol) 129, 5964.Google Scholar
Jones, J. D. G., Carland, F. C., Lim, E., Ralston, E., & Dooner, H. K. 1990b. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. The Plant Cell 2, 701–7.Google ScholarPubMed
Jones, J. D. G., Dickinson, M. J., & Jones, J. D. G. 1991. Genetic locations of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Rep. Tom. Gen. Coop. (In Press).Google Scholar
Kanwar, J. S., Kerr, E. A., & Harney, P. M. 1980. Linkage of the Cf-1 to Cf-11 genes for resistance to tomato leaf mould, Cladosporium fulvum Cke. Rep. Tom. Gen. Coop. 30, 2021.Google Scholar
Kerr, E. A., & Bailey, D. L. 1964. Resistance to Cladosporium fulvum Cke obtained from wild species of tomato. Canadian Journal of Botany 42, 1541–54.CrossRefGoogle Scholar
Kanwar, J. S., Kerr, E., Patrick, Z. A., & Potter, J. W. 1980. Linkage relation of resistance to Cladosporium leaf mould (Cf-2) and root-knot-nematodes (Mi) in tomato and a new gene for leaf mould resistance (Cf-11) Canadian Journal of Genetics and Cytology. 22, 183–6.Google Scholar
Langford, A. N. 1937. The parasitism of Cladosporium fulvum Cooke and the genetics of resistance to it. Can. J. Res. C. 15, 108–28.CrossRefGoogle Scholar
Laterrot, H. 1986. Race 2.5.9 a new race of Cladosporium fulvum (Fulvia fulva) and sources of resistance in tomato. Netherlands Journal of Plant Pathology 92, 305–7.CrossRefGoogle Scholar
Ludwig, S. R., Habera, L. F., Dellaporta, S. L., & Wessler, S. R. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of The National Academy of Sciences, USA. 86, 7092–6.CrossRefGoogle Scholar
Martin, C., Carpenter, R., Sommer, H., Saedler, H., & Coen, E. S. 1985. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. Embo Journal 4, 1625–30.CrossRefGoogle ScholarPubMed
McCarty, D. R., Carson, C. B., Lazar, M., & Simonds, S. C. 1989. Transposable element-induced mutations of the viviparous-1 gene in maize. Dev. Genet. 10, 473–81.CrossRefGoogle Scholar
McClintock, B. 1938. Mutable loci in maize. Carnegie Institute of Washington Yearbook 47, 155–69.Google Scholar
McClintock, B. 1978. Development of the maize endosperm as revealed by clones. In The clonal basis of development, pp. 217237, eds. Subteleny, S., & Sussex, I. New York: Academic Press, Inc.Google Scholar
Napoli, C., Lemieux, C., & Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell 2, 279–89.CrossRefGoogle ScholarPubMed
Paz-Ares, J., Wienand, U., Peterson, P. A., & Saedler, H. 1986. Molecular cloning of the C locus of Zea mays: A locus regulating the anthocyanin pathway. Embo Journal 5, 829–33.CrossRefGoogle Scholar
Pryor, T. 1987. The origin and structure of fungal disease resistance genes in plants. Trends in Genet. 3, 157–61.CrossRefGoogle Scholar
Shapiro, J., (ed.) 1983. Mobile Genetic Elements.Google Scholar
Shimamoto, K. 1990. Transposition of Ac in rice. J. Cell Biochem. Suppl. 14E, 258.Google Scholar
Spena, A., Aalen, R. B., & Schulze, S. C. 1989. Cell autonomous behaviour of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants. The Plant Cell 1, 1157–64.Google ScholarPubMed
Svab, Z., Harper, E. C., Jones, J. D. G., & Maliga, P. 1990. Aminoglycoside-3″-adenyltransferase confers resistance to streptomycin and spectinomycin in Nicotiana tabacum. Plant. Mol. Biol. 14, 197205.CrossRefGoogle ScholarPubMed
Triglia, T., Peterson, M. G., & Kemp, D. J. 1988. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research 16, 8186.CrossRefGoogle ScholarPubMed
VanSluys, M. A., Tempe, J., & Federoff, N. 1987. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. Embo Journal 6, 3881–9.CrossRefGoogle Scholar
Velten, J., Velten, L., Hain, R., & Schell, J. 1984. Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. Embo Journal 3, 2723–30.CrossRefGoogle ScholarPubMed
Wessler, S. R. 1988. Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science (Wash.) 242, 399405.CrossRefGoogle ScholarPubMed
Yoder, J. I., Palys, J., Alpert, K., & Lassner, M. 1988. Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213, 291–6.Google Scholar
van-den-Elzen, P. J. M., Townsend, J., Lee, K. Y., & Bedbrook, J. R. 1985. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant. Mol. Biol. 5, 299302.CrossRefGoogle ScholarPubMed