Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T04:20:58.426Z Has data issue: false hasContentIssue false

Specific induction of ethylene biosynthesis in tobacco plants by the air pollutant, ozone

Published online by Cambridge University Press:  05 December 2011

Zu-Hua Yin
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK
Christian Langebartels
Affiliation:
Institut für Pflanzenpathologie, GSF Forschungszentrum für Umwelt und Gesundheit Neuherberg, D-85758 Oberschleißheim, Germany
Heinrich Sandermann Jr
Affiliation:
Institut für Pflanzenpathologie, GSF Forschungszentrum für Umwelt und Gesundheit Neuherberg, D-85758 Oberschleißheim, Germany
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, F. B., Morgan, P. W. & Saltveit, M. E., 1992. Ethylene in plant biology. San Diego: Academic Press.Google Scholar
Boller, T. 1991. Ethylene in pathogenesis and disease resistance. In Mattoo, A. K. & Suttle, J. C. (Eds.) The plant hormone ethylene pp. 293314. Boca Raton: CRC Press.Google Scholar
Bors, W., Langebartels, C., Michel, C. & Sandermann, H. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28, 1589–95.CrossRefGoogle Scholar
Ernst, D., Schraudner, M., Langebartels, C. & Sandermann, H. 1992. Ozone-induced changes of mRNA levels of β-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Molecular Biology 20, 673–82.CrossRefGoogle ScholarPubMed
Heath, R. L. 1993. Alterations of plant metabolism by ozone exposure. In Alscher, R. G. (Ed.) Gaseous pollutants and plant metabolism In press.Google Scholar
Kende, H. 1993. Ethylene biosynthesis. Annual Review Plant Physiology and Plant Molecular Biology 44, 283307.CrossRefGoogle Scholar
Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W. & Sandermann, H. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology 95, 882–9.CrossRefGoogle ScholarPubMed
Mehlhorn, H. & Wellburn, A. R. 1987. Stress ethylene formation determines plant sensitivity to ozone. Nature 327, 417–18.CrossRefGoogle Scholar
Sandermann, H., Ernst, D., Heller, W. & Langebartels, C. 1993. Biochemical markers for stress. Detection and ecophysiology. In Schulze, E.-D. & Mooney, H. A. (Eds.) Design and execution of experiments on CO2 enrichment Commission of the European Communities, pp. 4951. Ecosystem Research Report Series 6.Google Scholar
Schraudner, M., Ernst, D., Langebartels, C. & Sandermann, H. 1992. Biochemical plant responses to ozone. III. Activation of the defense-related proteins β-1,3-glucanase and chitinase in tobacco leaves. Plant Physiology 99, 1321–8.Google Scholar
Steinberger, E. H. & Naveh, Z. 1982. Effects of recurring exposures to small ozone concentrations on Bel W3 tobacco plants. Agriculture and Environment 7, 255–63.CrossRefGoogle Scholar
Tingey, D. T., Standley, C. & Field, R. W. 1976. Stress ethylene evolution: a measure of ozone effects on plants. Atmospheric Environment 10, 969–74.Google Scholar