Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T17:24:39.040Z Has data issue: false hasContentIssue false

Immersing projective spaces in Euclidean space

Published online by Cambridge University Press:  14 November 2011

M. C. Crabb
Affiliation:
Department of Mathematics, University of Aberdeen, Aberdeen AB9 2TY, Scotland, U.K

Synopsis

Using the KOℝ/2-theoretic obstruction theory developed in [4] and [5], necessary and sufficient conditions are derived for quaternionic projective spaces ℍPk and odd-dimensional complex projective spaces ℂP2k+1, of real dimension m say, to immerse in Euclidean space ℝ2m−1 in the range l ≦ 14. The results refine those obtained by Davis and Mahowald ([10, 11]) and earlier authors.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, J. F.. Vector fields on spheres. Ann. of Math. 75 (1962), 603632.CrossRefGoogle Scholar
2Crabb, M. C.. The Elder class, the Euler characteristic and obstruction theory for monomorphisms of vector bundles (D. Phil. Thesis, Oxford, 1975).Google Scholar
3Crabb, M. C.. ℝ/2-Homotopy Theory (Edinburgh: Cambridge University Press, 1980).CrossRefGoogle Scholar
4Crabb, M. C.. On the KO ℝ/2-Euler class, I. Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 115137.CrossRefGoogle Scholar
5Crabb, M. C.. On the KO ℝ/2m-Euler class, II. Proc. Roy. Soc. Edinburgh Sect. A. 117 (1991), 139154.CrossRefGoogle Scholar
6Crabb, M. C. and Knapp, K.. On the codegree of negative multiples of the Hopf bundle. Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 87107.CrossRefGoogle Scholar
7Crabb, M. C. and Steer, B.. Vector-bundle monomorphisms with finite singularities. Proc. London Math. Soc. 30 (1975), 139.CrossRefGoogle Scholar
8Davis, D. M.. Generalised homology and the generalised vector field problem. Quart. J. Math. Oxford (2) 25 (1974), 169194.CrossRefGoogle Scholar
9Davis, D. M., Gitler, S. and Mahowald, M.. The stable geometric dimension of vector bundles over real projective spaces. Trans. Amer. Math. Soc. 268 (1981), 3961.CrossRefGoogle Scholar
10Davis, D. M. and Mahowald, M.. Immersions of complex projective spaces and the generalised vector field problem. Proc. London Math. Soc. 35 (1977), 333344.CrossRefGoogle Scholar
11Davis, D. M. and Mahowald, M.. The Euler class for connective fco-theory and an application to immersions of quaternionic projective space. Indiana Univ. Math. J. 28 (1979), 10251034.CrossRefGoogle Scholar
12Feder, S. and Iberkleid, W.. Secondary operations in K-theory and the generalized vector field problem. Lecture Notes in Math. 597 (1977), 161175.CrossRefGoogle Scholar
13James, I. M.. On the immersion problem for real projective spaces. Bull. Amer. Math. Soc. 69 (1963), 231238.CrossRefGoogle Scholar
14Mayer, K. H.. Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen. Topology 4 (1965), 295313.CrossRefGoogle Scholar
15Sigrist, F. and Suter, U.. On immersions CP nR 4n−2α(n). Lecture Notes in Math. 673 (1978), 106115.Google Scholar
16Steer, B.. On immersing complex projective (4k + 3)-space in euclidean space. Quart. J. Math. Oxford (2) 22 (1971), 339345.CrossRefGoogle Scholar