Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T08:15:04.065Z Has data issue: false hasContentIssue false

Fractal dimension of potential singular points set in the Navier–Stokes equations under supercritical regularity

Published online by Cambridge University Press:  18 April 2023

Yanqing Wang
Affiliation:
Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China wangyanqing20056@gmail.com
Gang Wu
Affiliation:
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China wugang2011@ucas.ac.cn

Abstract

The main objective of this paper is to answer the questions posed by Robinson and Sadowski [22, p. 505, Commun. Math. Phys., 2010] for the Navier–Stokes equations. Firstly, we prove that the upper box dimension of the potential singular points set $\mathcal {S}$ of suitable weak solution $u$ belonging to $L^{q}(0,T;L^{p}(\mathbb {R}^{3}))$ for $1\leq \frac {2}{q}+\frac {3}{p}\leq \frac 32$ with $2\leq q<\infty$ and $2< p<\infty$ is at most $\max \{p,q\}(\frac {2}{q}+\frac {3}{p}-1)$ in this system. Secondly, it is shown that $1-2s$ dimension Hausdorff measure of potential singular points set of suitable weak solutions satisfying $u\in L^{2}(0,T;\dot {H}^{s+1}(\mathbb {R}^{3}))$ for $0\leq s\leq \frac 12$ is zero, whose proof relies on Caffarelli–Silvestre's extension. Inspired by Barker–Wang's recent work [1], this further allows us to discuss the Hausdorff dimension of potential singular points set of suitable weak solutions if the gradient of the velocity is under some supercritical regularity.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, T. and Wang, W.. Estimates of the singular set for the Navier–Stokes equations with supercritical assumptions on the pressure. arXiv:2111.15444, 2022.Google Scholar
Beirao da Veiga, H.. A new regularity class for the Navier–Stokes equations in $\mathbb {R}^n$. Chin. Ann. Math. Ser. B 16 (1995), 407412.Google Scholar
Berselli, L. C. and Galdi, G. P.. Regularity criteria involving the pressure for the weak solutions of the Navier–Stokes equations. Proc. Am. Math. Soc. 130 (2002), 35853595.CrossRefGoogle Scholar
Caffarelli, L., Kohn, R. and Nirenberg, L.. Partial regularity of suitable weak solutions of Navier–Stokes equation. Commun. Pure Appl. Math. 35 (1982), 771831.Google Scholar
Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007), 12451260.CrossRefGoogle Scholar
Colombo, M., De Lellis, C. and Massaccesi, A.. The generalized Caffarelli–Kohn–Nirenberg theorem for the hyperdissipative Navier–Stokes system. Commun. Pure Appl. Math. 73 (2020), 609663.CrossRefGoogle Scholar
Escauriaza, L., Seregin, G. and Šverák, V.. On $L^{\infty }L^3$ -solutions to the Navier-tokes equations and Backward uniqueness. Russ. Math. Surv. 58 (2003), 211250.Google Scholar
Falconer, K.. Fractal geometry: mathematical foundations and applications (New York: Wiley, 1990).Google Scholar
Gustafson, S., Kang, K. and Tsai, T.. Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J.Differ. Equ. 226 (2006), 594618.CrossRefGoogle Scholar
Hajaiej, H., Molinet, L., Ozawa, T. and Wang, B.. Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized Boson equations. In Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kokyuroku Bessatsu, vol. B26, pp. 159–175 (Kyoto: Res. Inst. Math. Sci. (RIMS), 2011).Google Scholar
He, C., Wang, Y. and Zhou, D.. New $\epsilon$-regularity criteria of suitable weak solutions of the 3D Navier–Stokes equations at one scale. J.Nonlinear Sci. 29 (2019), 26812698.CrossRefGoogle Scholar
Kenig, C. E., Ponce, G. and Vega, L.. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993), 527620.CrossRefGoogle Scholar
Kozono, H. and Taniuchi, Y.. Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235 (2000), 173194.Google Scholar
Kukavica, I.. The fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearity 22 (2009), 28892900.CrossRefGoogle Scholar
Kukavica, I. and Pei, Y.. An estimate on the parabolic fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearity 25 (2012), 27752783.CrossRefGoogle Scholar
Kwon, H.. The role of the pressure in the regularity theory for the Navier–Stokes equations. arXiv:2104.03160, 2021.Google Scholar
Ladyzenskaja, O. and Seregin, G.. On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J.Math. Fluid Mech. 1 (1999), 356387.Google Scholar
Lin, F.. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51 (1998), 241257.3.0.CO;2-A>CrossRefGoogle Scholar
Ren, W., Wang, Y. and Wu, G.. Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. Commun. Contemp. Math. 18 (2016), 1650018.CrossRefGoogle Scholar
Robinson, J. and Sadowski, W.. Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations. Nonlinearity 20 (2007), 11851191.CrossRefGoogle Scholar
Robinson, J. and Sadowski, W.. Almost-everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations. Nonlinearity 22 (2009), 20932099.CrossRefGoogle Scholar
Robinson, J. and Sadowski, W.. On the dimension of the singular set of solutions to the Navier–Stokes equations. Commun. Math. Phys. 309 (2012), 497506.Google Scholar
Scheffer, V.. Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66 (1976), 535552.CrossRefGoogle Scholar
Scheffer, V.. Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55 (1977), 97112.CrossRefGoogle Scholar
Scheffer, V.. The Navier–Stokes equations in space dimension four. Commun. Math. Phys. 61 (1978), 4168.CrossRefGoogle Scholar
Struwe, M.. On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41 (1988), 437458.CrossRefGoogle Scholar
Serrin, J.. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9 (1962), 187195.CrossRefGoogle Scholar
Taniuchi, Y.. On generalized energy equality of the Navier–Stokes equations. Manuscr. Math. 94 (1997), 365384.CrossRefGoogle Scholar
Tang, L. and Yu, Y.. Partial regularity of suitable weak solutions to the fractional Navier–Stokes equations. Commun. Math. Phys. 334 (2015), 14551482.CrossRefGoogle Scholar
Wang, W. and Zhang, Z.. On the interior regularity criteria and the number of singular points to the Navier–Stokes equations. J.Anal. Math. 123 (2014), 139170.CrossRefGoogle Scholar
Wang, Y. and Wu, G.. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations. J.Differ. Equ. 256 (2014), 12241249.CrossRefGoogle Scholar
Wang, Y., Mei, X. and Wei, W.. Gagliardo–Nirenberg inequality in anisotropic Lebesgue spaces and energy equality in the Navier–Stokes equations. arXiv:2204.07479, 2022.Google Scholar
Wang, Y., Wu, G. and Zhou, D.. A regularity criterion at one scale without pressure for suitable weak solutions to the Navier–Stokes equations. J.Differ. Equ. 267 (2019), 46734704.CrossRefGoogle Scholar
Wei, W., Wang, Y. and Ye, Y.. Gagliardo–Nirenberg inequalities in Lorentz type spaces and energy equality for the Navier–Stokes system. arXiv:2106.11212, 2021.Google Scholar
Yang, R.. On higher order extensions for the fractional Laplacian. Preprint arXiv:1302.4413, 2013.Google Scholar
Zhou, Y.. Regularity criteria in terms of pressure for the 3D Navier–Stokes equations in a generic domain. Math. Ann. 328 (2004), 173192.CrossRefGoogle Scholar
Zhou, Y.. On regularity criteria in terms of pressure for the Navier–Stokes equations in $\mathbb {R}^3$. Proc. Am. Math. Soc. 134 (2005), 149156.CrossRefGoogle Scholar