Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-dkbpd Total loading time: 0.332 Render date: 2023-02-03T00:07:30.644Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Blow-up for a heat equation with convection and boundary flux

Published online by Cambridge University Press:  14 July 2008

Arturo de Pablo
Affiliation:
Departamento de Matemáticas, \onm{Universidad Carlos III de Madrid}, 28911 Leganés, Spain (arturop@math.uc3m.es)
Guillermo Reyes
Affiliation:
Departamento de Matemáticas, Universidad Politécnica de Madrid, 28040 Madrid, Spain (greyes@caminos.upm.es)
Ariel Sánchez
Affiliation:
Departamento de Matemáticas, Universidad Rey Juan Carlos, 28933 Móstoles, Spain (ariel.sanchez@urjc.es)

Abstract

We study the evolution of solutions to the initial-boundary-value problem

\begin{alignat*}{3} u_t&=(u^m)_{xx}+\lambda(u^q)_x, & \quad x&>0,&\quad t&\in(0,T), \\[2pt] -(u^m)_x(0,t)&=u^p(0,t), & &&t&\in(0,T), \\[2pt] u(x,0)&=u_0(x), & \quad x&>0, \end{alignat*}

and give a rather complete characterization, in terms of the parameters $m\ge1$, $p,q>0$ and $\lambda>0$, of whether all solutions are global in time or, on the contrary, there exist blow-up solutions. We show that the presence of the convective term has a preventive effect on the blow-up (with respect to the case $\lambda=0$) and gives rise to a collapse of the region where all solutions blow up in this case. On the other hand, a new Fujita-type phenomenon takes place at the level $p=q$ and $0<\lambda<1$.

Type
Research Article
Copyright
2008 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Blow-up for a heat equation with convection and boundary flux
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Blow-up for a heat equation with convection and boundary flux
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Blow-up for a heat equation with convection and boundary flux
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *