Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-t46fd Total loading time: 0.292 Render date: 2021-10-28T00:24:12.408Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Regulation of Hepatic Fatty Acid Oxidation and Ketogenesis

Published online by Cambridge University Press:  28 February 2007

Victor A. Zammit
Affiliation:
Hannah Research Institute, Ayr KA6 5HL, Scotland
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Comparative Aspects of Fatty Acid Metabolism’
Copyright
Copyright © The Nutrition Society 1983

References

Aas, M. & Daae, N. W. (1971). Biochim. biophys. Acta 239, 208.CrossRefGoogle Scholar
Bailey, E. & Horne, J. A. (1972). Comp. Biochem. Physiol. 42B, 659.Google Scholar
Baird, G. D., Heitzman, R. J. & Hibbit, K. G. (1972). Biochem. J. 128, 1311.CrossRefGoogle Scholar
Bates, E. J. & Saggerson, E. D. (1979). Biochem. J. 182, 751.CrossRefGoogle Scholar
Bates, E. J., Topping, D. L., Sooranna, S. R., Saggerson, E. D. & Mayes, P. A. (1977). FEBS Lett. 84, 225.CrossRefGoogle Scholar
Berry, M. N., Williamson, D. H. & Wilson, M. B. (1964). Biochem. J. 94, 17C.CrossRefGoogle Scholar
Bloch, K. & Vance, D. (1977). Ann. Rev. Biochem. 46, 263.CrossRefGoogle Scholar
Borrebaek, B., Christiansen, R., Christophersen, B. O. & Bremer, J. (1976). Circulation Res. 38 (Suppl. 1) 16.Google Scholar
Brass, E. P. & Hoppel, C. L. (1978). J. biol. Chem. 253, 2688.Google Scholar
Bremer, J., Bjerve, K. S., Borrebaek, B. & Christiansen, R. (1976). Mol. Cell Biochem. 12, 113.CrossRefGoogle Scholar
Bremer, J. & Davis, E. J. (1974). Biochim. biophys. Acta 370, 564.CrossRefGoogle Scholar
Carroll, M. A., Morris, P. E., Grosjean, C. D., Anzalone, T. & Haldar, D. (1982). Arch. Biochem. Biophys. 214, 17.CrossRefGoogle Scholar
Claus, T. H., Schlumpf, J. R., El-Maghrabi, M. R., Pilkis, J. & Pilkis, S. J. (1980). Proc. Nat. Acad. Sci., USA 77, 6501.CrossRefGoogle Scholar
Cook, G. A., Nielsen, R. C., Hawkins, R. A., Mehlman, M. A., Lakshmanan, M. R. & Veech, R. L. (1977). J. biol. Chem. 252, 4421.Google Scholar
Cook, G. A., Otto, D. A. & Cornell, N. W. (1980). Biochem. J. 192, 955.CrossRefGoogle Scholar
Cronholm, T., Curstedt, T. & Sjövall, J. (1982). In Metabolic Compartmentation, p. 331 [Sies, H., editor]. London and New York: Academic Press.Google Scholar
Davis, T. F. & Langslow, D. R. (1975). Comp. Biochem. Physiol. 52A, 645.CrossRefGoogle Scholar
Declercq, P. E., Debeer, L. J. & Mannaerts, G. P. (1982). Biochem. J. 204, 247.CrossRefGoogle Scholar
De Jong, J. W. & Hülsmann, W. C. (1973). Biochim. biophys. Acta 197, 127.CrossRefGoogle Scholar
Demaugre, F., Leroux, J.-P. & Cartier, P. (1978). Biochem. J. 172, 91.CrossRefGoogle Scholar
Fine, M. B. & Williams, R. H. (1960). Am. J. Physiol. 199, 403.Google Scholar
Garland, P. B. (1968). In Metabolic Roles of Citrate, p. 41 [Goodwin, T. W., editor]. New York: Academic Press.Google Scholar
Goodridge, A. G. (1972). J. biol. Chem. 247, 6949.Google Scholar
Goresky, G. A., Daly, D. S., Mishkin, S. & Arias, I. M. (1978). Am. J. Physiol. 234, E542.Google Scholar
Groot, P. H. E., Scholte, H. R. & Hülsmann, W. C. (1976). Adv. Lipid Res. 14, 75.CrossRefGoogle Scholar
Groot, P. H. E., van Loon, C. M. I. & Hülsmann, W. C. (1974). Biochim. biophys. Acta 337, 1.CrossRefGoogle Scholar
Guynn, R. W., Veloso, D. & Veech, R. L. (1972). J. biol. Chem. 247, 7325.Google Scholar
Hales, C. N., Luzio, J. P. & Siddle, K. (1978). Biochem. Soc. Symp. 43, 97.Google Scholar
Halestrap, A. P. (1978 a). Biochem. J. 172, 377.CrossRefGoogle Scholar
Halestrap, A. P. (1978 b). Biochem. J. 172, 389.CrossRefGoogle Scholar
Huth, W. (1981). Eur. J. Biochem. 120, 357.CrossRefGoogle Scholar
Huth, W., Dierich, C., Deynhausen, V. & Seubert, W. (1973). Hoppe-Seyler's Z. Physiol. Chem. 354, 635.CrossRefGoogle Scholar
Huth, W., Jonas, R., Wunderlich, I. & Seubert, W. (1975). Eur. J. Biochem. 59, 475.CrossRefGoogle Scholar
Huth, W. & Menke, R. (1980). Hoppe-Seyler's Z. Physiol. Chem. 361, 607.Google Scholar
Huth, W., Stermann, R., Holze, G. & Seubert, W. (1978). In Biochemical and Clinical Aspects of Ketone Body Metabolism, p. 11 [Söling, H. D. and Seufert, C. D., editors]. Stuttgart: George Thieme.Google Scholar
Ide, T. & Ontko, J. A. (1981). J. biol. Chem. 256, 10247.Google Scholar
Laker, M. E. & Mayes, P. A. (1982). Biochem. J. 206, 427.CrossRefGoogle Scholar
Lopes-Cardozo, M., Mulder, I., Van Vugt, F., Hermans, P. G. & van den Bergh, S. G. (1975). Mol. Cell Biochem. 9, 155.CrossRefGoogle Scholar
Lopes-Cardozo, M. & van den Bergh, S. G. (1972). Biochim. biophys. Acta 283, 1.CrossRefGoogle Scholar
Lund, H., Borrebaek, B. & Bremer, J. (1980). Biochim. biophys. Acta 620, 364.CrossRefGoogle Scholar
Lynen, F. (1979). In Perspectives in Inherited Metabolic Diseases, vol. 3, P. 1 [Berra, B. and Didonato, S., editors]. Milan: Ermes.Google Scholar
McGarry, J. D. & Foster, D. W. (1972). Metab. Clin. Exp. 21, 471.CrossRefGoogle Scholar
McGarry, J. D. & Foster, D. W. (1974). J. biol. Chem. 249, 7984.Google Scholar
McGarry, J. D. & Foster, D. W. (1981). Biochem. J. 200, 217.CrossRefGoogle Scholar
McGarry, J. D., Jürgen, M. M. & Foster, D. W. (1973). J. biol. Chem. 248, 270.Google Scholar
McGarry, J. D., Mannaerts, G. P. & Foster, D. W. (1977). J. clin. Invest. 60, 265.CrossRefGoogle Scholar
McGarry, J. D., Mannaerts, G. P. & Foster, D. W. (1978). Biochim. biophys. Acta 530, 305.CrossRefGoogle Scholar
McGarry, J. D., Robles-Valdes, C. & Foster, D. W. (1975). Proc. Nut. Acad. Sci., USA 72, 4385.CrossRefGoogle Scholar
Mayes, P. A. & Felts, J. M. (1967). Nature, Lond. 215, 716.CrossRefGoogle Scholar
Mayes, P. A. & Laker, M. E. (1981). Biochem. Soc. Trans. 9, 339.CrossRefGoogle Scholar
Middleton, B. (1978). In Biochemical and Clinical Aspects of Ketone Body Metabolism, p. 1 [Söling, H. D. and Seufert, C. D., editors]. Stuttgart: George Thieme.Google Scholar
Nestel, P. J. & Steinberg, D. (1963). J. Lipid Res. 4, 461.Google Scholar
Nimmo, H. G. (1979). FEBS Lett. 101, 262.CrossRefGoogle Scholar
Nimmo, H. G. (1980). In Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation, p. 135 [Cohen, P., editor]. Amsterdam: Elsevier.Google Scholar
Norum, K. R., Farstad, M. & Bremer, J. (1966). Biochem. biophys. Res. Commun. 22, 797.CrossRefGoogle Scholar
Nosadini, R., Alberti, K. G. M. M., Johnston, D. G., Del Prato, S., Marescotti, C. & Duner, E. (1981). Metab. clin. Exp. 30, 563.CrossRefGoogle Scholar
Nosadini, R., Datta, M., Hodson, A. & Alberti, K. G. M. M. (1980). Biochem. J. 190, 323.CrossRefGoogle Scholar
Ontko, J. A. & Johns, M. L. (1980). Biochem. J. 192, 959.CrossRefGoogle Scholar
Owen, D. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. (1969). J. clin. Invest. 48, 574.CrossRefGoogle Scholar
Page, M. A. & Tubbs, P. K. (1978). Biochem. J. 173, 925.CrossRefGoogle Scholar
Pande, S. V. (1975). Proc. Nat. Acad. Sci., USA 72, 883.CrossRefGoogle Scholar
Pande, S. V. & Parvin, R. (1976). J. biol. Chem. 251, 6683.Google Scholar
Pande, S. V. & Parvin, R. (1980 a). J. biol. Chem. 255, 2994.Google Scholar
Pande, S. V. & Parvin, R. (1980 b). In Carnitine Biosynthesis, Metabolism & Functions, p. 143 [Frenkel, R. A. and McGarry, J. D., editors]. New York: Academic Press.CrossRefGoogle Scholar
Parvin, R. & Pande, S. V. (1979). J. biol. Chem. 25, 5423.Google Scholar
Pearson, D. J. & Tubbs, P. K. (1967). Biochem. J. 105, 953.CrossRefGoogle Scholar
Pilkis, S. J., El-Maghrabi, M. R., Pilkis, J., Claus, T. H. & Cumming, D. A. (1981). J. biol. Chem. 256, 3171.Google Scholar
Ramsay, R. R. (1978). Biochem. Soc. Trans. 6, 72.CrossRefGoogle Scholar
Ramsay, R. R. & Tubbs, P. K. (1974). Biochem. Soc. Trans. 2, 1285.CrossRefGoogle Scholar
Ramsay, R. R. & Tubbs, P. K. (1975). FEBS Lett. 54, 21.CrossRefGoogle Scholar
Reed, W. D., Clinkenbeard, K. D. & Lane, M. D. (1975). J. biol. Chem. 250, 3117.Google Scholar
Robinson, I. N. & Zammit, V. A. (1982). Biochem. J. 206, 177.CrossRefGoogle Scholar
Robles-Valdez, C., McGarry, J. D. & Foster, D. W. (1976). J. biol. Chem. 251, 6007.Google Scholar
Saggerson, E. D. (1979). Trends Biochem. Sci. 4, 33.CrossRefGoogle Scholar
Saggerson, E. D. & Bates, E. (1981). In Short-term Regulation of Liver Metabolism, p. 247 [Hal, L. and Van de Werve, G., editors]. Amsterdam: Elsevier.Google Scholar
Saggerson, E. D. & Carpenter, C. A. (1981). FEBS Lett. 129, 225.CrossRefGoogle Scholar
Saggerson, E. D., Snoswell, A. M., Trimble, R. P., Illman, R. J. & Topping, D. L. (1981). Biochem. Int. 3, 441.Google Scholar
Siess, E. A., Fahimi, F. M. & Wieland, O. H. (1980). Biochem. Biophys. Res. Commun. 95, 205.CrossRefGoogle Scholar
Siess, E. A., Kientsch-Engel, R. I. & Wieland, O. H. (1982). Eur. J. Biochem. 121, 493.CrossRefGoogle Scholar
Soler-Argilaga, C., Russel, R. L. & Heimberg, M. (1978). Arch. Biochem. Biophys. 190, 367.CrossRefGoogle Scholar
Van Tol, A. (1974). Biochim. biophys. Acta 357, 14.CrossRefGoogle Scholar
Van Tol, A. & Hülsmann, W. C. (1970). Biochim. biophys. Acta 223, 416.CrossRefGoogle Scholar
Watson, H. R. & Lindsay, D. B. (1972). Biochem. J. 128, 53.CrossRefGoogle Scholar
Williamson, D. H., Veloso, D., Ellington, E. V. & Krebs, H. A. (1969). Biochem. J. 114, 575.CrossRefGoogle Scholar
Williamson, D. H. & Whitelaw, E. (1978). Biochem. Soc. Symp. 43, 137.Google Scholar
Zammit, V. A. (1980). Biochem. Soc. Trans. 8, 543.CrossRefGoogle Scholar
Zammit, V. A. (1981 a). Biochem. J. 198, 75.CrossRefGoogle Scholar
Zammit, V. A. (1981 b). Trends Biochem. Sci. 6, 46.CrossRefGoogle Scholar
Zammit, V. A., Beis, A. & Newsholme, E. A. (1979). FEBS Lett. 103, 212.CrossRefGoogle Scholar
Zammit, V. A. & Corstorphine, C. G. (1982). Biochem. J. 204, 757.CrossRefGoogle Scholar
Zammit, V. A. & Newsholme, E. A. (1979). Biochem. J. 184, 313.CrossRefGoogle Scholar
You have Access
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Regulation of Hepatic Fatty Acid Oxidation and Ketogenesis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Regulation of Hepatic Fatty Acid Oxidation and Ketogenesis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Regulation of Hepatic Fatty Acid Oxidation and Ketogenesis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *