Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T22:42:31.277Z Has data issue: false hasContentIssue false

Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: Implications for nutrient partitioning

Published online by Cambridge University Press:  11 October 2007

Luigi Gnudi
Affiliation:
The Harvard Thorndike Research Laboratory and Department of Medicine, Harvard Medical School and Beth Israel Hospital, Boston, MA, 02215, USA
Peter R. Shepherd
Affiliation:
Department of Clinical Biochemistry, University of Cambridge, Cambridge
Barbara B. Kahn
Affiliation:
The Harvard Thorndike Research Laboratory and Department of Medicine, Harvard Medical School and Beth Israel Hospital, Boston, MA, 02215, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Glucose transporters in the control of metabolism’
Copyright
Copyright © The Nutrition Society 1996

References

Albert, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. 1989 Molecular Biology of the Cell New York and London: Garlan Publishing, Inc..Google Scholar
Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., Fukumoto, H. & Seino, S. (1990). Molecular biology of mammalian glucose transporters. Diabetes Care 13, 198208.CrossRefGoogle ScholarPubMed
Brozinick, J. T., Etgen, G. J., Yaspeikis, B. B. & Ivy, J. L. (1992). Contraction activated glucose uptake is normal in insulin resistant muscle of the obese Zucker rat. Journal of Applied Physiology 73, 382387.Google Scholar
Butler, P. C., Kryshak, E. J., Marsh, M. & Rizza, R. A. (1990). Effect of insulin on oxidation of intracellularly and extracellularly derived glucose in patients with NIDDM-Evidence for primary defect in glucose transport and/or phosphorylation but not oxidation. Diabetes 39, 13731380.Google Scholar
Cousin, B., Agou, K., Leturque, A., Ferre, P., Girard, J. & Penicaud, L. (1992). Molecular and metabolic changes in white adipose tissue of the rat during development of ventromedial hypothalamic obesity. European Journal of Biochemistry 207, 377382.Google Scholar
DeFronzo, R. A. (1988). The triumvirate: beta cell, muscle, liver. Diabetes 37, 667687.Google Scholar
Fink, R. I., Wallace, P., Brechtel, G. & Olefsky, J. M. (1992). Evidence that glucose transport is rate limiting for in vivo glucose uptake. Metabolism 41, 897902.CrossRefGoogle ScholarPubMed
Friedman, J. E., Vente, J. E. D., Peterson, R. G. & Dohm, G. L. (1991). Altered expression of muscle glucose transporter GLUT4 in diabetic fatty Zucker rats (ZDF/Drt-fa). American Journal of Physiology 261, E782E788.Google Scholar
Gnudi, L., Jensen, D. R., Tozzo, E., Bliss, J. L., Heckel, R. H. & Kahn, B. B. (1994). Altered regulation of lipoprotein lipase activity in adipose tissue and muscle of transgenic mice overexpressing GLUT4 selectively in fat. Diabetes 43, Suppl. 1 133A.Google Scholar
Gnudi, L., Tozzo, E., Shepherd, P. R., Bliss, J. L. & Kahn, B. B. (1995). High level overexpression of glucose transporter-4 driven by an adipose-specific promoter is maintained in transgenic mice on a high fat diet, but does not prevent impaired glucose tolerance. Endocrinology 135, 9951002.Google Scholar
Hainault, I., Guerre-Millo, M., Guichard, C. & Lavau, M. (1991). Differential regulation of adipose tissue transporters in genetic obesity: selective increase in the adipose cell/muscle glucose transporter. Journal of Clinical Investigation 87, 11271131.CrossRefGoogle ScholarPubMed
Kahn, B. B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. Journal of Clinical Investigation 89, 13671374.CrossRefGoogle ScholarPubMed
Kahn, B. B. & Pedersen, O. (1992). Suppression of Glut 4 expression in skeletal muscle of rats which are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 132, 1322.CrossRefGoogle Scholar
Katz, A., Nyomba, B. L. & Bogardus, C. (1988). No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia. American Journal of Physiology 255, E.942E.945.Google Scholar
King, P. A., Horton, E. D., Hirshman, M. F. & Horton, E. S. (1992). Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. Journal of Clinical Investigation 90, 15681575.CrossRefGoogle ScholarPubMed
Kraegen, E. W., James, D. E., Storlien, L. H., Burleigh, K. M. & Chisholm, D. J. (1986). In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia 29, 192198.CrossRefGoogle ScholarPubMed
Pedersen, O., Kahn, C. R., Flier, J. S. & Kahn, B. B. (1991). High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut4) in fat cell of rats. Endocrinology 129, 771777.CrossRefGoogle Scholar
Pedersen, O., Kahn, C. R. & Kahn, B. B. (1992). Divergent regulation of the Glut 1 and Glut 4 glucose transporters in isolated adipocytes from Zucker rats. Journal of Clinical Investigation 89, 19641973.Google Scholar
Penicaud, L., Ferre, P., Terretaz, J., Kinepanyan, M. F., Leturque, A., Dore, E., Girard, J., Jeanrenaud, D. & Picon, L. (1987). Development of obesity in Zucker rats: early insulin resistance in muscle but normal sensitivity in white adipose tissue. Diabetes 36, 626631.Google Scholar
Rothman, D. L., Shulman, R. G. & Shulman, G. I. (1992). 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Journal of Clinical Investigation 89, 10691075.Google Scholar
Shepherd, P. R., Gnudi, L., Tozzo, E., Yang, H., Leach, F. & Kahn, B. B. (1993). Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. Journal of Biological Chemistry 268, 2224322246.CrossRefGoogle ScholarPubMed
Shepherd, P. R. & Kahn, B. B. 1993 Cellular Defects in Glucose Transport: Lesson From Animal Models and Implications for Human Insulin Resistance 253300 Moller, D. Chichester: John Wiley.Google Scholar
Swinburn, B. A., Boyce, V. L., Bergman, R. N., Howard, B. V. & Bogdardus, C. (1991). Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. Journal of Clinical Endocrinology and Metabolism 73, 156165.Google Scholar
Thorens, B., Charron, M. J. & Lodish, H. F. (1990). Molecular physiology of glucose transporters. Diabetes Care 13, 209218.CrossRefGoogle ScholarPubMed
Tozzo, E., Shepherd, P. R., Gnudi, L. & Kahn, B. B. (1995). Transgenic Glut4 overexpression in fat enhances glucose metabolism: preferential effect on fatty acid synthesis. American Journal of Physiology 268, E956E964.Google Scholar
Waddell, I. D., Zomerschoe, A. G., Voice, M. W. & Burchell, A. (1992). Cloning and expression of a hepatic microsomal glucose transporter protein. Biochemical Journal 286, 173177.Google Scholar
Yki-Jarvinen, H., Sahlin, K., Ren, J. M. & Koivisto, V. A. (1990). Localization of rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type I diabetic patients. Diabetes 39, 157167.CrossRefGoogle ScholarPubMed
Yki-Jarvinen, H., Young, A., Lamkin, C. & Foley, J. E. (1987). Kinetics of glucose disposal in whole body and across skeletal muscle in man. Journal of Clinical Investigation 79, 17131719.Google Scholar
Zarjevski, N., Cusin, I., Vettor, R., Rohner-Jeanrenaud, F. & Jeanrenaud, B. (1994). Intracerebroven-tricular administration of neuropeptide Y to normal rats has divergent effects on glucose utilization by adipose tissue and skeletal muscle. Diabetes 43, 764769.CrossRefGoogle ScholarPubMed
Zeil, F. H., Venkatesan, N. & Davidson, M. B. (1988). Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and streptozotocin induced diabetic rats. Diabetes 37, 885890.Google Scholar