Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.373 Render date: 2022-05-21T17:03:48.123Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Hormonal regulation of the insulin-responsive glucose transporter, GLUT4: some recent advances

Published online by Cambridge University Press:  11 October 2007

Callum Livingstone
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Fiona J. Thomson
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Margaret I. Arbuckle
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Ian W. Campbell
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Thomas J. Jess
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Susan Kane
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Colin Moyes
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Lisa M. Porter
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Jacqueline E. Rice
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Michael J. Seatter
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Gwyn W. Gould
Affiliation:
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Glucose transporters in the control of metabolism’
Copyright
Copyright © The Nutrition Society 1996

References

Baldwin, S. A. (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta 1154, 1749.CrossRefGoogle ScholarPubMed
Bell, G. I., Burant, C. F., Takeda, J. & Gould, G. W. (1993). Structure and function of mammalian facilitative sugar transporters. Journal of Biological Chemistry 268, 1916119164.Google ScholarPubMed
Bjorbaek, C., Echwald, S. M., Hubrecht, P., Vestegaard, H., Hansen, T., Zierath, J. & Pedersen, O. (1994). Genetic variants in promoter and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM. Diabetes 43, 976983.CrossRefGoogle ScholarPubMed
Brot-Laroche, E. (1996). Differential regulation of the fructose transporters GLUT2 and GLUT5 in the intestinal cell line Caco-2. Proceedings of the Nutrition Society 55, 201208.CrossRefGoogle ScholarPubMed
Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. & Davidson, N. O. (1992). Fructose transporter in human spermatozoa and small intestine is GLUT5. Journal of Biological Chemistry 267, 1452314526.Google ScholarPubMed
Buse, J. B., Yasuda, K., Lay, T. P., Seo, T. S., Karam, J. H., Seino, S. & Bell, G. I. (1992). Human GLUT4/muscie-fat glucose transporter gene: characterisation and genetic variation. Diabetes 41, 14361445.CrossRefGoogle Scholar
Cain, C. C., Trimble, W. S. & Lienhard, G. E. (1992). Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter containing vesicles from rat adipocytes. Journal of Biological Chemistry 267, 1168111684.Google ScholarPubMed
Calderhead, D. M. & Lienhard, G. E. (1988). Labelling of glucose transporters at the cell surface of 3T3-L1 adipocytes. Journal of Biological Chemistry 263, 1217112174.Google Scholar
Choi, W.-H., O'Rahiliy, S., Buse, J. B., Rees, A., Morgan, R., Flier, J. S. & Moller, D. E. (1991). Molecular scanning of insulin-responsive glucose transporter (GLUT4) gene in NIDDM subjects. Diabetes 40, 17121718.CrossRefGoogle ScholarPubMed
Ciaraldi, T. P., Molina, J. M. & Olefsky, J. M. (1991). Insulin action kinetics in adipocytes from obese and non-insulin dependent diabetes mellitus subjects: identification of multiple cellular defects in glucose transport. Journal of Clinical Endocrinology and Metabolism 72, 876882.CrossRefGoogle ScholarPubMed
Clarke, J. F., Young, P. W., Yonezawa, K., Kasuga, M. & Holman, G. D. (1994). Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the P13 kinase inhibitor wortmannin. Biochemical Journal 300, 631634.CrossRefGoogle Scholar
Corvera, S., Chawla, A., Chakrabati, R., Joly, M., Buxton, J. & Czech, M. P. (1994). A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. Journal of Cell Biology 126, 979989.CrossRefGoogle ScholarPubMed
Czech, M. P., Chawla, A., Woon, C.-W., Buxton, J., Armoni, M., Tang, W., Joly, M. & Corvera, S. (1993). Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular location. Journal of Cell Biology 123, 127135.CrossRefGoogle Scholar
Denton, R. M. & Tavare, J. M. (1995). Does mitogen-activated protein kinase have a role in insulin action?. European Journal of Biochemistry 227, 597611.CrossRefGoogle ScholarPubMed
Eriksson, J., Koranyi, L., Bourey, R., Schalinjantti, C., Widen, E., Mueckler, M., Permutt, M. A. & Groop, L. C. (1992). Insulin resistance in type II (non-insulin dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT4) gene in skeletal muscle. Diabetologia 35, 143147.CrossRefGoogle Scholar
Fingar, D. C., Hausdorff, S. F., Blenis, J. & Birnbaum, M. J. (1993). Dissociation of pp70 ribosomal protein S6 kinase from insulin-stimulated glucose transport in 3T3-L1 adipocytes. Journal of Biological Chemistry 268, 30053008.Google ScholarPubMed
Garvey, W. T., Maianu, L., Hueksteadt, T. P., Birnaum, M. J., Molina, J. M. & Ciaraldi, T. P. (1991). Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with NIDDM and obesity. Journal of Clinical Investigation 87, 10721081.CrossRefGoogle ScholarPubMed
Garvey, W. T., Maianu, L., Zhu, J.-H., Hancock, J. A. & Golichowski, A. M. (1993). Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Diabetes 42, 17731785.CrossRefGoogle ScholarPubMed
Gould, G. W. & Holman, G. D. (1993). The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal 295, 329341.CrossRefGoogle ScholarPubMed
Gould, G. W., Jess, T. J. H., Andrews, G. C., Herbst, J. L., Plevin, R. J. & Gibbs, E. M. (1994). Evidence for a role of phosphatidylinositol 3-kinase in the regulation of glucose transport in Xenopus oocytes. Journal of Biological Chemistry 269, 2662226625.Google ScholarPubMed
Gould, G. W., Merrall, N. W., Martin, S., Jess, T. J., Campbell, I. W., Calderhead, D. C., Gibbs, E. M., Holman, G. D. & Plevin, R. J. (1994). Growth factor induced stimulation of hexose transport in 3T3-L1 adipocytes: evidence that insulin-induced translocation of GLUT4 is independent of activation of MAP kinase. Cellular Signalling 6, 313320.CrossRefGoogle ScholarPubMed
Handberg, A., Vaag, A., Damsbo, P., Beck-Nielsen, H. & Vinten, J. (1990). Expression of insulin regulatable glucose transporters in skeletal muscle froir type II diabetic patients. Diabetologia 33, 625627.CrossRefGoogle Scholar
Herman, G. A., Bonzelius, F., Cieutat, A.-M. & Kelly, R. B. (1994). Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP. Proceedings of the National Academy of Sciences, USA 91, 1275012754.CrossRefGoogle Scholar
Holman, G. D., Leggio, L. L. & Cushman, S. W. (1994). Insulin stimulated glucose transporter recycling. Journal of Biological Chemistry 269, 1751617524.Google ScholarPubMed
Hudson, A. W., Fingar, D. C., Seidner, G. A., Griffiths, G., Burke, B. & Birnbaum, M. J. (1993). Targeting of the insulin-responsive glucose transporter to the regulated secretory pathway in PC 12 cell's. Journal of Cell Biology 122, 579588.CrossRefGoogle Scholar
James, D. E., Hiken, J. F., Lawrence, J. C. Jr (1989). Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes. Proceedings of the National Academy of Sciences, USA 86, 83688372.CrossRefGoogle ScholarPubMed
James, D. E. & Piper, R. C. (1994). Insulin resistance, diabetes and the insulin-regulated trafficking of GLUT4. Journal of Cell Biology 126, 11231126.CrossRefGoogle Scholar
Jhun, B. H., Rampal, A. L., Liu, H., Lachaal, M. & Jung, C. Y. (1992). Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Journal of Biological Chemistry 267, 1771017715.Google ScholarPubMed
Kaestner, K. H., Flores-Riveros, J. C., McLenithan-Janicot, M. & Lne, M. D. (1991). Transcriptional repression of the mouse GLUT4 gene by cAMP. Proceedings of the National Academy of Sciences, USA 88, 19331937.CrossRefGoogle ScholarPubMed
Kozka, I. J. & Holman, G. D. (1993). Metformin blocks downregulation of cell surface GLUT4 caused by chronic insulin treatment of rat adipocytes. Diabetes 42, 11591165.CrossRefGoogle ScholarPubMed
Kusari, J., Varma, U. S., Buse, J. B., Henry, R. R. & Olefsky, J. M. (1991). Analysis of the gene sequence of the insulin receptor and the insulin-sensitive glucose transporter (GLUT4) in patients with common type II non-insulin dependent diabetes mellitus. Journal of Clinical Investigation 88, 13231330.CrossRefGoogle Scholar
Laurie, S. M., Cain, C. C., Lienhard, G. E. & Castle, J. D. (1993). The glucose transporter GLUT4 and secretory carrier membrane proteins (SCAMPs) colocalise in rat adipocytes and partially segregate during insulin stimulation. Journal of Biological Chemistry 268, 1911019117.Google Scholar
Lawrence, J. C. Jr, Hiken, J. F. & James, D. E. (1990). Phosphorylation of the glucose transporter in rat adipocytes. Journal of Biological Chemistry 265, 23242332.Google ScholarPubMed
Livingstone, C. & Gould, G. W. (1995). Insulin resistance in diabetes mellitus: defects in the insulin-regulatable glucose transporter plays an important role. Scottish Medical Journal 40, 3759.CrossRefGoogle Scholar
Livingstone, C., Hanpeter, D. F., Rice, J. E., James, D. E. & Gould, G. W. (1996). Compartment ablation analysis of adipocyte GLUT4. EMBO Journal (In the Press).Google Scholar
Martin, S., Reaves, B., Banting, G. & Gould, G. W. (1994). Analysis of the colocalisation of the insulin-responsive glucose transporter (GLUT4) and the trans Golgi network marker TGN38 within 3T3-L1 adipocytes. Biochemical Journal 300, 743749.CrossRefGoogle Scholar
Mueckler, M. (1990). Family of glucose transporter genes: implications for glucose homeostasis and diabetes. Diabetes 39, 611.CrossRefGoogle ScholarPubMed
Oka, Y., Rozek, L. M. & Czech, M. P. (1985). Insulin activates the appearance of insulin-like growth factor II receptors on the adipocyte cell surface. Journal of Biological Chemistry 260, 94359442.Google Scholar
Okada, T., Sakuma, L., Fukui, Y., Hazeki, O. & Ui, M. (1994). Essential role of phosphatidylinositol 3′-kinase in induced glucose transport and antilipolysis in rat adipocytes. Journal of Biological Chemistry 269, 35633567.Google Scholar
Pedersen, O., Bak, J. F., Anderson, P. H., Lund, S., Moller, D. E., Flier, J. S. & Kahn, B. B. (1990). Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39, 865870.CrossRefGoogle ScholarPubMed
Piper, R. C., Hess, L. J. & James, D. E. (1991). Differential sorting of two glucose transporters expressed in insulin-sensitive cells. American Journal of Physiology 260, C570C580.Google ScholarPubMed
Robinson, L. J., Pang, S., Harris, D. S., Heuser, J. & James, D. E. (1992). Translocation of the glucose transporter GLUT4 to the cell surface in permeabilised adipocytes: effects of ATP, insulin, GTP-γ-S and localisation of GLUT4 to clathrin lattices. Journal of Cell Biology 117, 11811196.CrossRefGoogle Scholar
Robinson, L. J., Razzack, Z. F., Lawrence, J. D. Jr & James, D. E. (1993). Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3-L1 adipocytes. Journal of Biological Chemistry 268, 2642226427.Google ScholarPubMed
Satoh, S., Gonzalez-Mulero, O. M., Clark, A. E., Kozka, I. J., Quon, M. J., Cushman, S. W. & Holman, G. D. (1993). Use of bismannose photolabels to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells: evidence that exocytosis is a critical site of hormone action. Journal of Biological Chemistry 268, 1782017829.Google Scholar
Simpson, I. A. & Cushman, S. W. (1986). Hormonal regulation of mammalian glucose transport. Annual Review of Biochemistry 55, 10591069.CrossRefGoogle ScholarPubMed
Slot, J. W., Gueze, H. J., Gigengack, S., James, D. E. & Lienhard, G. E. (1991a). Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proceedings of the National Academy of Sciences, USA 88, 78157819.CrossRefGoogle ScholarPubMed
Slot, J. W., Gueze, H. J., Gigengack, S., Lienhard, G. E. & James, D. E. (1991b). Immuno-localisation of the insulin-regulatable glucose transporter in brown adipose tissue of the rat. Journal of Cell Biology 113, 123135.CrossRefGoogle Scholar
Südhof, T. C., De Camilli, P., Neimann, H. & Jahn, R. (1993). Membrane fusion machinery: insights from synaptic proteins. Cell 75, 14.CrossRefGoogle ScholarPubMed
Tanner, L. I. & Lienhard, G. E. (1987). Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalisation. Journal of Biological Chemistry 262, 89758980.Google Scholar
Tanner, L. I. & Lienhard, G. E. (1989). Localisation of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain glucose transporters. Journal of Cell Biology 108, 15371545.CrossRefGoogle Scholar
Vannucci, S. J., Nishimura, H., Satoh, S., Cushman, S. W., Holman, G. D. & Simpson, I. A. (1992). Changes in cell surface accessibility of GLUT4 glucose transporter: effects of insulin, isoproterenol and adenosine. Biochemical Journal 288, 325330.CrossRefGoogle ScholarPubMed
Waddell, I. D., Zomerschoe, A. G., Voice, M. W. & Burchell, A. (1992). Cloning and expression of a hepatic microsomal glucose transport protein. Biochemical Journal 286, 173177.CrossRefGoogle ScholarPubMed
White, M. F. & Kahn, C. R. (1994). The insulin signalling system. Journal of Biological Chemistry 269, 14.Google Scholar
Yang, J. & Holman, G. D. (1992). Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. Journal of Biological Chemistry 268, 46004603.Google ScholarPubMed
Zorzano, A., Wilkinson, W., Kotlair, N., Thoidis, G., Wadzinski, B. E., Ruoho, A. E. & Pilch, P. F. (1989). Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least twovesicle populations. Journal of Biological Chemistry 264, 1235812363.Google ScholarPubMed
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hormonal regulation of the insulin-responsive glucose transporter, GLUT4: some recent advances
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hormonal regulation of the insulin-responsive glucose transporter, GLUT4: some recent advances
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hormonal regulation of the insulin-responsive glucose transporter, GLUT4: some recent advances
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *