Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T11:43:54.667Z Has data issue: false hasContentIssue false

Growth in perspective

Published online by Cambridge University Press:  28 February 2007

Peter J. Reeds
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor Collage of Medicine, 1100 Bates Street, Houston, Texas 77030, USA
Marta L. Fiorotto
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor Collage of Medicine, 1100 Bates Street, Houston, Texas 77030, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Growth’
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Blau, M. M., Pavlath, G. K., Hardeman, G., Chiu, C. -P., Silberstein, L., Webster, S. G., Miller, S. C. & Webster, C. (1985). Plasticity of the differentiated state. Science 230, 758766.CrossRefGoogle ScholarPubMed
Brodie, C. & Sampson, S. R. (1987). Nerve growth factor supports growth of rat skeletal myotubes in culture. Brain Research 435, 393397.CrossRefGoogle ScholarPubMed
Burns, H. J. G. (1990). Growth promoters in humans. Proceedings of the Nutrition Society 49, 467472.CrossRefGoogle ScholarPubMed
Buttery, P. J. & Dawson, J. M. (1990). Growth promotion in farm animals. Proceedings of the Nutrition Society 49, 459466.CrossRefGoogle ScholarPubMed
Davis, D. L., Weintraub, H. & Lasser, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 9871000.CrossRefGoogle ScholarPubMed
Davis, T. A., Fiorotto, M. L., Nguyen, H. V. & Reeds, P. J. (1989). Protein turnover in skeletal muscles of suckling rats. American Journal of Physiology 257, R1141–R1146.Google ScholarPubMed
Falconer, D. S. (1973). Replicated selection for body weight in mice. Genetic Research Cambridge 22, 291321.CrossRefGoogle ScholarPubMed
Falconer, D. S., Gauld, I. K., Roberts, R. C. & Williams, D. A. (1981). The control of body size in mouse chimeras. Genetic Research Cambridge 38, 2546.CrossRefGoogle Scholar
Fanberg, B. L. & Posner, I. (1968). Ribonucleic acid synthesis in experimental cardiac hypertrophy in rats. Circulation Research 23, 123128.CrossRefGoogle Scholar
Ferrell, C. L. & Koong, K. J. (1986). Influence of plane of nutrition on body composition, organ size and energy utilization of Spraguc-Dawley rats. Journal of Nutrition 116, 25252535.CrossRefGoogle ScholarPubMed
Ferrell, C. L., Koong, K. J. & Nienaber, J. A. (1986). Effect of previous nutrition on body composition and maintenance energy costs of growing lambs. British Journal of Nutrition 56, 595605.CrossRefGoogle ScholarPubMed
Fjeld, C. R., Schoeller, D. A. & Brown, K. H. (1989). A new model for predicting energy requirements of children during catch-up growth developed using doubly labelled water. Pediatric Research 25, 503508.CrossRefGoogle Scholar
Florini, J. R. (1987). Hormonal control of muscle growth. Muscle and Nerve 10, 577598.CrossRefGoogle ScholarPubMed
Fomon, S. J., Haschke, F., Ziegler, E. E. & Nelson, S. E. (1982). Body composition of reference children from birth to age 10 years. American Journal of Clinical Nutrition 35, 11691175.CrossRefGoogle ScholarPubMed
Foster, R. F., Thompson, J. M. & Kaufman, S. J. (1987). A laminin substrate promotes myogenesis in rat skeletal muscle cultures. Analysis of replication and development using anti-desmin and anti-BrdUrd monoclonal antibodies. Development Biology 122, 1120.CrossRefGoogle Scholar
Fuller, M. F., Fowler, P. A., McNeill, G. & Foster, M. A. (1990). Body composition: the precision and accuracy of new methods and their suitability for longitudinal studies. Proceedings of the Nutrition Society 49, 423436.CrossRefGoogle ScholarPubMed
Goss, R. J. (1986). Modes of growth and regeneration. In Human Growth, vol. 1, pp. 326 [Falkner, F. and Tanner, J. M., editors]. New York: Plenum.CrossRefGoogle Scholar
Goss, R. J. (1990). Similarities and differences between mechanisms of organ and tissue growth regulation. Proceedings of the Nutrition Society 49, 437442.CrossRefGoogle ScholarPubMed
Gregory, P. W., Low, R. B. & Stirewalt, W. S. (1986). Changes in skeletal-muscle myosin isozymes with hypertrophy and exercise. Biochemical Journal 238, 5563.CrossRefGoogle ScholarPubMed
Henning, S. J. (1986). Development of the gastrointestinal tract. Proceedings of the Nutrition Society 45, 3944.CrossRefGoogle ScholarPubMed
Laurent, G. J., Sparrow, M. P. & Millward, D. J. (1978). Turnover of muscle protein in the fowl. Changes in the rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochemical Journal 176, 407417.CrossRefGoogle ScholarPubMed
Lodge, G. A., Sarker, N. K. & Kramer, J. K. G. (1978). Fat deposition and fatty acid composition in the nconatal pig. Journal of Animal Science 47, 487504.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1977). Fat. Pediatric Research 11, 10811086.CrossRefGoogle ScholarPubMed
McCance, R. A. & Widdowson, E. M. (1986). Glimpses of comparative growth and development. In Human Growth, vol. 1, pp. 133151 [Falkner, F. and Tanner, J. M, editors]. London: Plenum.CrossRefGoogle Scholar
Millward, D. J. (1988). The endocrine response to dietary protein. The anabolic drive on growth. In Milk Proteins, pp. 4961 [Barth, C. A. and Schlimme, E, editors]. Darmstadt: Steinkopf Verlag.Google Scholar
Morgan, H. E., Chua, B. H. L., Fuller, E. O. & Siehl, D. H. (1980). Regulation of Protein synthesis and breakdown during in vitro cardiac work. American Journal of Physiology 238, E431E437.Google ScholarPubMed
Patrick, J., Reeds, P. J., Jackson, A. A., Seakins, A. & Picou, D. I. M. (1978). Total body water in malnutrition, the possible role of energy intake. British Journal of Nutrition 39, 417424.CrossRefGoogle ScholarPubMed
Pinney, D. F., Pearson-White, S. H., Konieczny, S. F., Latham, K. E. & Emerson, C. R. (1988). Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53, 781793.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F. & Nicholson, B. A. (1985). Metabolic basis of energy expenditure with particular reference to protein. In Substrate and Energy Metabolism in Man, pp. 4667 [Garrow, J. S. and Halliday, D, editors]. London: John Libbey and Son.Google Scholar
Rucklidge, G. J. (1981). Differences in body compositions, growth and food intakes between mice that have been selected for a small and large body size. British Journal of Nutrition 46, 441447.CrossRefGoogle ScholarPubMed
Rucklidge, G. J. (1982). Difference in body composition. growth and food intakes between mice which have been selected for a small and large body size. Effect of plane of neonatal nutrition. British Journal of Nutrition 48, 341351.CrossRefGoogle Scholar
Seve, B., Reeds, P. J., Fuller, M. F., Cadenhead, A. & Hay, S. M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early-weaning. Possible connection to the energy metabolism. Reproduction, Nutrition, Development 26, 849861.CrossRefGoogle Scholar
Snow, M. H. L. & Bennett, D. (1978). Gastrulation in the mouse, the establishment of cell populations in the epiblast of tw18/tw18 embryos. Journal of Embryology and Experimental Morphology 47, 3952.Google Scholar
Spady, D. W., Payne, P. R., Picou, D. & Waterlow, J. C. (1976). Energy balance during recovery from malnutrition. American Journal of Clinical Nutrition 29, 10731078.CrossRefGoogle ScholarPubMed
Widdowson, E. M. & Dickerson, J. W. T. (1964). Chemical composition of the body. In Mineral Metabolism, An Advanced Treatise. vol. 11A, pp. 2247 [Comar, C. L. and Bonner, F, editors]. New York: Academic Press.Google Scholar