Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T02:48:38.876Z Has data issue: false hasContentIssue false

z ~ 6 metal-line absorbers as a probe of galactic feedback models

Published online by Cambridge University Press:  21 March 2017

Laura C. Keating
Affiliation:
Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Ewald Puchwein
Affiliation:
Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Martin G. Haehnelt
Affiliation:
Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Simeon Bird
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
James S. Bolton
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of metal absorption lines in the spectra of QSOs out to z > 6 are providing an important probe into the enrichment and ionization state of the intergalactic medium (IGM) at the tail end of reionization. Using simulations with four different feedback models, including the Illustris and Sherwood simulations, we investigate how the overall incidence rate and equivalent width distribution of metal-line absorbers varies with the galactic wind scheme. The low-ionization absorbers are reasonably insensitive to the feedback implementation, with all models reasonably close to the observed incidence rate of O i absorbers. However, all of our models struggle to reproduce the observations of C iv, which is probing overdensities close to the mean at z ~ 6, suggesting that the metals are not being transported out into the IGM efficiently enough in these simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Becker, G. D., Sargent, W. L. W., Rauch, M. & Calverley, A. P. 2011 ApJ, 735, 93 Google Scholar
Bird, S., Vogelsberger, M., Haehnelt, M., Sijacki, D., Genel, S., Torrey, P., Springel, V. & Hernquist, L. 2014 MNRAS, 445, 2313 Google Scholar
Bird, S., Haehnelt, M., Neeleman, M., Genel, S., Vogelsberger, M. & Hernquist, L. 2015 MNRAS, 447, 1834 Google Scholar
Bolton, J. S., Puchwein, E., Sijacki, D., Haehnelt, M. G., Kim, T.-S., Meiksin, A., Regan, J. A., & Viel, M. 2016 astro-ph:1605.03462Google Scholar
D'Odorico, V., Cupani, G., Cristiani, S., et al. 2013 MNRAS, 435, 1198 Google Scholar
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., Lykins, M. L., Shaw, G., Henney, W. J. & Stancil, P. C. 2013 Rev. Mexicana AyA, 49, 137 Google Scholar
Haardt, F. & Madau, P. 2012 ApJ, 746, 125 Google Scholar
Keating, L. C., Puchwein, E., Haehnelt, M. G., Bird, S. & Bolton, J. S. 2016 MNRAS, 461, 606 Google Scholar
Nelson, D., Pillepich, A., Genel, S., et al. 2015 Astronomy and Computing, 13, 12 Google Scholar
Puchwein, E. & Springel, V. 2013 MNRAS, 428, 2966 CrossRefGoogle Scholar
Rahmati, A., Pawlik, A. H., Raičevic, M. & Schaye, J. 2013 MNRAS, 430, 2427 CrossRefGoogle Scholar
Springel, V. 2005 MNRAS, 364, 1105 Google Scholar
Springel, V. 2010 MNRAS, 401, 791 Google Scholar
Vogelsberger, M., Genel, S., Sijacki, D., Torrey, P., Springel, V. & Hernquist, L. 2013 MNRAS, 436, 3031 CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Springel, V., et al. 2014 Nature, 509, 177 Google Scholar